【題目】如圖,在正四棱錐中,O為頂點S在底面ABCD內(nèi)的投影,P為側棱SD的中點,且.

(1)證明:平面PAC.

(2)求直線BC與平面PAC的所成角的大小.

【答案】(1)見解析;(2)

【解析】

1)連接OP,可得,利用線面平行的判定定理即可證出.

2)以O為坐標原點,以OA所在直線為x軸,OB所在直線為y軸,OS所在直線為z軸,建立空間直角坐標系,設,求出平面PAC的一個法向量,利用向量的數(shù)量積結合圖形即可求解.

(1)證明:連接OP,因為OP分別為BDSD的中點,所以

平面PAC,平面PAC,所以平面PAC.

(2):如圖,以O為坐標原點,以OA所在直線為x軸,OB所在直線為y軸,

OS所在直線為z軸,建立空間直角坐標系.

,

,,,

,.

設平面PAC的一個法向量為

,

所以,令,得,

所以

所以

故直線BC與平面PAC的夾角為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】我校為豐富師生課余活動,計劃在一塊直角三角形的空地上修建一個占地面積為(平方米)的矩形健身場地,如圖,點上,點上,且點在斜邊上,已知, 米, 米, .設矩形健身場地每平方米的造價為元,再把矩形以外(陰影部分)鋪上草坪,每平方米的造價為元(為正常數(shù))

(1)試用表示,并求的取值范圍;

(2)求總造價關于面積的函數(shù);

(3)如何選取,使總造價最低(不要求求出最低造價)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班級體育課舉行了一次“投籃比賽”活動,為了了解本次投籃比賽學生總體情況,從中抽取了甲乙兩個小組樣本分數(shù)的莖葉圖如圖所示.

5

6

5

8

6

0

1

3

6

2

4

6

9

7

1

2

7

1

3

8

0

1

8

1

(1)分別求甲乙兩個小組成績的平均數(shù)與方差;

(2)分析比較甲乙兩個小組的成績;

(3)從甲組高于70分的同學中,任意抽取2名同學,求恰好有一名同學的得分在[80,90)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《聰明花開——莆仙話挑戰(zhàn)賽》欄目共有五個項目,分別為“和一斗”“斗麻利”“文儒生”“放獨步”“正功夫”.《聰明花開》欄目組為了解觀眾對項目的看法,設計了“你最喜歡的項目是哪一個”的調(diào)查問卷(每人只能選一個項目),對現(xiàn)場觀眾進行隨機抽樣調(diào)查,得到如下數(shù)據(jù)(單位:人):

和一斗

斗麻利

文儒生

放獨步

正功夫

115

230

115

345

460

(1)在所有參與該問卷調(diào)查的人中,用分層抽樣的方法抽取n人座談,其中恰有4人最喜歡“斗麻利”,求n的值及所抽取的人中最喜歡“和一斗”的人數(shù);

(2)在(1)中抽取的最喜歡“和一斗”和“斗麻利”的人中,任選2人參加欄目組互動,求恰有1人最喜歡“和一斗”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求下列函數(shù)的導數(shù).

(1)yx4-3x2-5x+6;

(2)y=3x2xcos x;

(3)y

(4)y=lg x ;

(5)y.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】先閱讀下列不等式的證法,再解決后面的問題:

已知,,求證:.

證明:構造函數(shù),

.

因為對一切,恒有,

所以,從而得.

1)若,,請寫出上述結論的推廣式;

2)參考上述證法,對你推廣的結論加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某射擊運動員每次擊中目標的概率都是0.7.現(xiàn)采用隨機模擬的方法估計該運動員射擊4次,至少擊中2次的概率:先由計算器算出0~9之間取整數(shù)值的隨機數(shù),指定0,1,2表示沒有擊中目標,3,4,5,6,7,8,9表示擊中目標;因為射擊4次,故以每4個隨機數(shù)為一組,代表射擊4次的結果.經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):

5727 0293 7140 9857 0347

4373 8636 9647 1417 4698

0371 6233 2616 8045 6011

3661 9597 7424 6710 4281

據(jù)此估計,該射擊運動員射擊4次至少擊中2次的概率為( )

A. 0.8 B. 0.85 C. 0.9 D. 0.95

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,其中實數(shù)滿足,若的最大值為,則 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)的奇偶性,并加以證明;

2)用定義證明上是減函數(shù);

3)函數(shù)上是單調(diào)增函數(shù)還是單調(diào)減函數(shù)?(直接寫出答案,不要求寫證明過程).

查看答案和解析>>

同步練習冊答案