已知yx在點(xy)處的切線斜率為一1,則x_______

 

答案:
解析:

±

 


提示:

y’=1-,由1-=-1,∴ x=±

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:數(shù)學教研室 題型:022

已知yx在點(x,y)處的切線斜率為一1,則x_______。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖南省、岳陽縣一中高三11月聯(lián)考理科數(shù)學 題型:解答題

(本小題滿分13分)(第一問8分,第二問5分)

已知函數(shù)f(x)=2lnx,g(x)=ax2+3x.

(1)設直線x=1與曲線yf(x)和yg(x)分別相交于點P、Q,且曲線yf(x)和yg(x)在點P、Q處的切線平行,若方程f(x2+1)+g(x)=3xk有四個不同的實根,求實數(shù)k的取值范圍;

(2)設函數(shù)F(x)滿足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導函數(shù);試問是否存在實數(shù)a,使得當x∈(0,1]時,F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x-a)2(x-b)(a,b∈R,a<b).

(1)當a=1,b=2時,求曲線y=f(x)在點(2,f(2))處的切線方程.

(2)設x1,x2是f′(x)=0的兩個根,x3是f(x)的一個零點,且x3≠x1,x3≠x2.

證明:存在實數(shù)x4,使得x1,x2,x3,x4按某種順序排列后成等差數(shù)列,并求x4.

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆湖南省澧縣一中、岳陽縣一中高三11月聯(lián)考理科數(shù)學 題型:解答題

(本小題滿分13分)(第一問8分,第二問5分)
已知函數(shù)f(x)=2lnx,g(x)=ax2+3x.
(1)設直線x=1與曲線yf(x)和yg(x)分別相交于點PQ,且曲線yf(x)和yg(x)在點P、Q處的切線平行,若方程f(x2+1)+g(x)=3xk有四個不同的實根,求實數(shù)k的取值范圍;
(2)設函數(shù)F(x)滿足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導函數(shù);試問是否存在實數(shù)a,使得當x∈(0,1]時,F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案