數(shù)列{an}滿足a1=1,a2=
1
2
,并且{an}滿足an(an-1+an+1)=2an+1an-1(n≥2)則數(shù)列{an}的第2014項為
 
考點:數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:利用遞推關(guān)系式推出﹛
1
an
}為等差數(shù)列,然后求出結(jié)果.
解答: 解:因為an(an-1+an+1)=2an+1an-1(n≥2),
anan-1+an+1an=2an+1an-1,兩邊同除an+1an-1,變形得
2
an
=
1
an+1
+
1
an-1
,
所以﹛
1
an
﹜為等差數(shù)列,
a1=1,a2=
1
2
,故an=
1
n

所以a2014=
1
2014

故答案為:
1
2014
點評:本題考查數(shù)列的遞推關(guān)系式的應用,判斷數(shù)列是等差數(shù)列是解題的關(guān)鍵,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

一個正三棱柱的正視圖是正方形,且它的外接球的表面積等于
25π
3
,則這個正三棱柱的底面邊長為(  )
A、
5
7
7
B、
4
7
C、
7
5
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
a
|=3,|
b
|=4,且滿足(2
a
-
b
)(
a
+2
b
)≥4,求
a
b
的夾角β的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=lnx-ax2(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當a=
1
8
時,證明:存在x0∈(2,+∞),使f(x0)=f(1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

i,j是兩個不共線的向量,且
AB
=3i+2j,
CB
=-2i+j,
CD
=i+λj若A,B,D三點共線,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)全集I={a,b,c,d},集合A與B是I的子集,若A∩B={a,b},則稱(A,B)為“理想配集”,所有“理想配集”的個數(shù)為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點A(3,
327
),B(-8,-2)分別在冪函數(shù)y=f(x)和y=g(x)的圖象上,且f(x)<g(x),求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若2sina=3cosa,則
4sina+cosa
5sina-2cosa
的值為( 。
A、
14
11
B、2
C、-
10
9
D、
14
11
10
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若拋物線y2=4x上的兩點A、B到焦點的距離之和為6,則線段AB的中點到y(tǒng)軸的距離為
 

查看答案和解析>>

同步練習冊答案