【題目】已知某班的50名學(xué)生進(jìn)行不記名問卷調(diào)查,內(nèi)容為本周使用手機(jī)的時(shí)間長(zhǎng),如表:
時(shí)間長(zhǎng)(小時(shí)) | |||||
女生人數(shù) | 4 | 11 | 3 | 2 | 0 |
男生人數(shù) | 3 | 17 | 6 | 3 | 1 |
(1)求這50名學(xué)生本周使用手機(jī)的平均時(shí)間長(zhǎng);
(2)時(shí)間長(zhǎng)為的7名同學(xué)中,從中抽取兩名,求其中恰有一個(gè)女生的概率;
(3)若時(shí)間長(zhǎng)為被認(rèn)定“不依賴手機(jī)”,被認(rèn)定“依賴手機(jī)”,根據(jù)以上數(shù)據(jù)完成列聯(lián)表:
不依賴手機(jī) | 依賴手機(jī) | 總計(jì) | |
女生 | |||
男生 | |||
總計(jì) |
能否在犯錯(cuò)概率不超過0.15的前提下,認(rèn)為學(xué)生的性別與依賴手機(jī)有關(guān)系?
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,)
【答案】(1)9小時(shí);(2);(3)答案見解析.
【解析】【試題分析】(1)用每組中點(diǎn)值作為代表乘以每組的人數(shù),相加后除以總?cè)藬?shù),得到平均時(shí)間。(2)利用列舉法列出所有的基本事件有種,其中符合題意的有種,利用古典概型計(jì)算公式可求得概率.(3)填寫表格后利用公式,計(jì)算出,故不能.
【試題解析】
(1),
所以,這50名學(xué)生本周使用手機(jī)的平均時(shí)間長(zhǎng)為9小時(shí).
(2)時(shí)間長(zhǎng)為的有7人,記為、、、、、、,其中女生記為、、、,從這7名學(xué)生中隨機(jī)抽取兩名的基本事件有:,,,,,,,,,,,,,,,,,,,,共21個(gè).
設(shè)事件表示恰有一位女生符合要求的事件有:,,,,,,,,,,,共12個(gè).
所以恰有一個(gè)女生的概率為.
(3)
依賴手機(jī) | 總計(jì) | ||
女生 | 15 | 5 | 20 |
男生 | 20 | 10 | 30 |
總計(jì) | 35 | 15 | 50 |
,
不能在犯錯(cuò)概率不超過0.15的前提下,認(rèn)為學(xué)生的性別與依賴手機(jī)有關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】響應(yīng)“文化強(qiáng)國(guó)建設(shè)”號(hào)召,某市把社區(qū)圖書閱覽室建設(shè)增列為重要的民生工程.為了解市民閱讀需求,隨機(jī)抽取市民200人做調(diào)查,統(tǒng)計(jì)顯示,男士喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女士喜歡閱讀古典文學(xué)的有36人,不喜歡的有44人.
(1)能否在犯錯(cuò)誤的概率不超過0.25的前提下認(rèn)為喜歡閱讀古典文學(xué)與性別有關(guān)系?
(2)為引導(dǎo)市民積極參與閱讀,有關(guān)部門牽頭舉辦市讀書交流會(huì),從這200人中篩選出5名男代表和4名代表,其中有3名男代表和2名女代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男代表和2名女代表參加交流會(huì),記為參加交流會(huì)的5人中喜歡古典文學(xué)的人數(shù),求的分布列及數(shù)學(xué)期望.
附:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,試確定實(shí)數(shù)的取值范圍;
(3)證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018四川南充市高三第二次(3月)高考適應(yīng)性考試】已知橢圓的離心率為,點(diǎn)在橢圓上.
(I)求橢圓的方程;
(II)直線平行于為坐標(biāo)原點(diǎn)),且與橢圓交于兩個(gè)不同的點(diǎn),若為鈍角,求直線在軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設(shè)點(diǎn),直線和曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,.
(1)求證:;
(2)若分別為的中點(diǎn),平面,求直線與平面所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若存在,使成立,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線.以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線、的極坐標(biāo)方程;
(2)射線與曲線、分別交于點(diǎn)(且均異于原點(diǎn))當(dāng)時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x-1上,過點(diǎn)A作圓C的切線,求切線的方程;
(2)若圓C上存在點(diǎn)M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com