已知三棱柱ABC-A1B1C1,底面ABC是邊長(zhǎng)為10的正三角形,側(cè)棱AA1垂直于底面ABC,且AA1=12,過(guò)底面一邊AB,作與底面ABC成60°角的截面面積是
 
考點(diǎn):棱柱的結(jié)構(gòu)特征
專題:空間位置關(guān)系與距離
分析:如圖所示.過(guò)底面一邊AB,作與底面ABC成60°角的截面為BCF1E1.利用截面的面積=
S梯形BCFE
cos60°
即可得出.
解答: 解:如圖所示.
過(guò)底面一邊AB,作與底面ABC成60°角的截面為BCF1E1
作E1E⊥AB交AB于點(diǎn)E,作F1F⊥AC交AC于點(diǎn)F.
分別作底面ABC、A1B1C1的邊BC、B1C1上的高,分別交EF、E1F1于點(diǎn)O、O1
則O1O=A1A=12.
∵tan60°=
O1O
OD
=
12
OD
,解得OD=4
3

而AD=5
3

∴S梯形BCFE=
24
25
S△ABC=
24
25
×
3
4
×102
=24
3

∴截面的面積=
S梯形BCFE
cos60°
=48
3

故答案為:48
3
點(diǎn)評(píng):本題考查了二面角的平面角、截面與射影的面積之間的關(guān)系、直角三角形的邊角關(guān)系,考查了空間想象能力,考查了推理能力與計(jì)算能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=[ax2+(a-1)2x+a-(a-1)2]ex  (其中a∈R).若x=0為f(x)的極值點(diǎn).解不等式f(x)>(x-1)(
1
2
x2+x+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x),對(duì)任意的兩個(gè)不相等的實(shí)數(shù)x1,x2,都有f(x1+x2)=f(x1)•f(x2)成立,且f(0)≠0,則f(-5)•f(-3)•f(-1)•f(1)•f(3)•f(5)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知對(duì)于?x∈[0,1],不等式2ax2+4x(x-1)+4-a(x-1)2>0恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=
(3a-1)x+4a,(x<1)
-ax,(x≥1)
是定義在(-∞,+∞)上是減函數(shù),則a的取值范圍是(  )
A、[
1
8
,
1
3
B、[0,
1
3
]
C、(0,
1
3
D、(-∞,
1
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a2+b2+c2=1,若
2
a+
3
b+2c≤|x-1|+|x+m
|對(duì)任意實(shí)數(shù)a,b,c,x恒成立,則實(shí)數(shù)m的取值范圍是( 。
A、[8,+∞)
B、(-∞,-4]∪[2,+∞)
C、(-∞,-1]∪[8,+∞)
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題:
①三角形一定是平面圖形;
②互相平行的三條直線都在同一平面內(nèi);
③梯形一定是平面圖形;
④四邊都相等的四邊形是菱形.
其中真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=kx,g(x)=
1nx
x

(Ⅰ)求函數(shù)g(x)=
1nx
x
的單調(diào)區(qū)間;
(Ⅱ)若不等式f(x)≥g(x)在區(qū)間(0,+∞)上恒成立,求實(shí)數(shù)k的取值范圍;
(Ⅲ)求證
1n2
2
4
 
+
1n3
3
4
 
+…+
1nn
n
4
 
1
2e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過(guò)點(diǎn)A(1,
2
2
)
,且離心率為
2
2

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)右焦點(diǎn)l:x=4的直線P與橢圓l相交于d兩點(diǎn),且
F1P
F1Q
,求直線C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案