【題目】一個(gè)總體分為A,B兩層,其個(gè)體數(shù)之比為5:1,用分層抽樣方法從總體中抽取一個(gè)容量為12的樣本,已知B層中甲、乙都被抽到的概率為 ,則總體中的個(gè)數(shù)為 .
【答案】48
【解析】解:設(shè)B層中有n個(gè)個(gè)體, ∵B層中甲、乙都被抽到的概率為 ,
∴ = ,
∴n2﹣n﹣56=0,
∴n=﹣7(舍去),n=8,
∵總體分為A,B兩層,其個(gè)體數(shù)之比為5:1,
∴共有個(gè)體(5+1)×8=48,
所以答案是:48.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解分層抽樣的相關(guān)知識(shí),掌握先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟,然后再在各個(gè)類型或?qū)哟沃胁捎煤?jiǎn)單隨機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體A1B1D1﹣ABCD中,四邊形A1B1BA與A1D1DA均為直角梯形,且AA1⊥底面ABCD,四邊形ABCD為正方形,AB=2A1D1=2A1B1=4,AA1=4,P為DD1的中點(diǎn).
(Ⅰ)求證:AB1⊥PC;
(Ⅱ)求幾何體A1B1D1﹣ABCD的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體ABCDEF中,四邊形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)證明:平面ACF⊥平面BEFD
(2)若二面角A﹣EF﹣C是二面角,求直線AE與平面ABCD所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題關(guān)于的不等式的解集是,命題函數(shù)的定義域?yàn)?/span>.
(1)如果為真命題,求實(shí)數(shù)的取值范圍;
(2)如果為真命題, 為假命題, 求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某樂隊(duì)參加一戶外音樂節(jié),準(zhǔn)備從3首原創(chuàng)新曲和5首經(jīng)典歌曲中隨機(jī)選擇4首進(jìn)行演唱.
(1)求該樂隊(duì)至少演唱1首原創(chuàng)新曲的概率;
(2)假定演唱一首原創(chuàng)新曲觀眾與樂隊(duì)的互動(dòng)指數(shù)為a(a為常數(shù)),演唱一首經(jīng)典歌曲觀眾與樂隊(duì)的互動(dòng)指數(shù)為2a,求觀眾與樂隊(duì)的互動(dòng)指數(shù)之和X的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為 ,四個(gè)頂點(diǎn)構(gòu)成的菱形的面積是4,圓M:(x+1)2+y2=r2(0<r<1).過橢圓C的上頂點(diǎn)A作圓M的兩條切線分別與橢圓C相交于B,D兩點(diǎn)(不同于點(diǎn)A),直線AB,AD的斜率分別為k1 , k2 .
(1)求橢圓C的方程;
(2)當(dāng)r變化時(shí),①求k1k2的值;②試問直線BD是否過某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,點(diǎn)A、B是函數(shù)f(x)圖象上不同兩點(diǎn),則∠AOB(O為坐標(biāo)原點(diǎn))的取值范圍是( )
A.(0, )
B.(0, ]
C.(0, )
D.(0, ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線C1:x=﹣2,圓C2:(x﹣1)2+(y﹣2)2=1,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求C1 , C2的極坐標(biāo)方程;
(Ⅱ)若直線C3的極坐標(biāo)方程為θ= (ρ∈R),設(shè)C2與C3的交點(diǎn)為M,N,求△C2MN的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐曲線C經(jīng)過定點(diǎn)P(3,),它的一個(gè)焦點(diǎn)為F(1,0),對(duì)應(yīng)于該焦點(diǎn)的準(zhǔn)線為x=-1,斜率為2的直線交圓錐曲線C于A、B兩點(diǎn),且 AB =,求圓錐曲線C和直線的方程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com