【題目】如圖,在幾何體A1B1D1﹣ABCD中,四邊形A1B1BA與A1D1DA均為直角梯形,且AA1⊥底面ABCD,四邊形ABCD為正方形,AB=2A1D1=2A1B1=4,AA1=4,P為DD1的中點.
(Ⅰ)求證:AB1⊥PC;
(Ⅱ)求幾何體A1B1D1﹣ABCD的表面積.

【答案】證明:(Ⅰ)∵幾何體A1B1D1﹣ABCD中,四邊形A1B1BA與A1D1DA均為直角梯形,且AA1⊥底面ABCD,四邊形ABCD為正方形,
∴以A為原點,AB為x軸,AD為y軸,AA1為z軸,建立空間直角坐標(biāo)系,
∵AB=2A1D1=2A1B1=4,AA1=4,P為DD1的中點.
∴A(0,0,0),B1(2,0,4),
C(4,4,0),D(0,4,0),D1(0,2,4),P(0,3,2),
=(2,0,4), =(4,1,﹣2),
=8+0﹣8=0,
∴AB1⊥PC.
(Ⅱ) =(4,0,0), =(0,﹣1,2),| |= ,DC⊥DP,
| |=| |= =6,| |= =2 ,| |= ,
C到直線DD1的距離d=| | =4
幾何體A1B1D1﹣ABCD的表面積:
+ + +
= + + + +
=42+6 +2
【解析】(Ⅰ)以A為原點,AB為x軸,AD為y軸,AA1為z軸,建立空間直角坐標(biāo)系,利用向量法能證明AB1⊥PC.(Ⅱ)幾何體A1B1D1﹣ABCD的表面積: + + +
【考點精析】根據(jù)題目的已知條件,利用空間中直線與直線之間的位置關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= x3+x2﹣ax+3a在區(qū)間[1,2]上單調(diào)遞增,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面為正三角形,側(cè)棱垂直底面,AB=4,AA1=6,若E,F(xiàn)分別是棱BB1 , CC1上的點,且BE=B1E,C1F= CC1 , 則異面直線A1E與AF所成角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)對于任意實數(shù)x,不等式|x+6|+|x﹣1|≥m恒成立. (I) 求m 的取值范圍;
(Ⅱ)當(dāng)m取最大值時,解關(guān)于x的不等式:|x﹣4|﹣3x≤2m﹣9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,角A,B,C所對的邊分別為a,b,c,向量 =( ,1), =(cosA+1,sinA),且 的值為2+
(1)求∠A的大;
(2)若a= ,cosB= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線 ,直線與拋物線交于, 兩點.

(1)若直線 的斜率之積為,證明:直線過定點;

(2)若線段的中點在曲線 上,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,△BCD為正三角形,AD=AB=2, ,AC與BD中心O點,將△ACD沿邊AC折起,使D點至P點,已知PO與平面ABCD所成的角為60°.
(1)求證:平面PAC⊥平面PDB;
(2)求已知二面角A﹣PB﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=2px(p>0),其準(zhǔn)線方程為x+1=0,直線l過點T(t,0)(t>0)且與拋物線交于A、B兩點,O為坐標(biāo)原點.
(1)求拋物線方程,并證明: 的值與直線l傾斜角的大小無關(guān);
(2)若P為拋物線上的動點,記|PT|的最小值為函數(shù)d(t),求d(t)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個總體分為A,B兩層,其個體數(shù)之比為5:1,用分層抽樣方法從總體中抽取一個容量為12的樣本,已知B層中甲、乙都被抽到的概率為 ,則總體中的個數(shù)為

查看答案和解析>>

同步練習(xí)冊答案