若正三角形的一個頂點(diǎn)在原點(diǎn),另兩個頂點(diǎn)在拋物線上,則這個三角形的面積為         。

試題分析:設(shè)正三角形在第一象限的點(diǎn)為,由正三角形性質(zhì)可得,點(diǎn)在拋物線上得  
點(diǎn)評:本題利用拋物線的對稱性可知正三角形兩頂點(diǎn)關(guān)于x軸對稱,因此求得即可得到三角形的邊長
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在軸上,長軸長是短軸長的2倍的橢圓經(jīng)過點(diǎn)M(2,1)
(Ⅰ)求橢圓的方程;
(Ⅱ)直線平行于,且與橢圓交于A、B兩個不同點(diǎn).
(。┤為鈍角,求直線軸上的截距m的取值范圍;
(ⅱ)求證直線MAMBx軸圍成的三角形總是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn),點(diǎn),直線、都是圓的切線(點(diǎn)不在軸上)。
⑴求過點(diǎn)且焦點(diǎn)在軸上拋物線的標(biāo)準(zhǔn)方程;
⑵過點(diǎn)作直線與⑴中的拋物線相交于、兩點(diǎn),問是否存在定點(diǎn),使.為常數(shù)?若存在,求出點(diǎn)的坐標(biāo)與常數(shù);若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的焦點(diǎn)為,點(diǎn)在橢圓上,若,的大小為                      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知點(diǎn)為拋物線: 的焦點(diǎn),為拋物線上的點(diǎn),且

(Ⅰ)求拋物線的方程和點(diǎn)的坐標(biāo);
(Ⅱ)過點(diǎn)引出斜率分別為的兩直線,與拋物線的另一交點(diǎn)為,與拋物線的另一交點(diǎn)為,記直線的斜率為
(。┤,試求的值;
(ⅱ)證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)如圖,已知拋物線C1: y=x2, 與圓C2: x2+(y+1)2="1," 過y軸上一點(diǎn)A(0, a)(a>0)作圓C2的切線AD,切點(diǎn)為D(x0, y0).

(1)證明:(a+1)(y0+1)=1
(2)若切線AD交拋物線C1于E,且E為AD的中點(diǎn),求點(diǎn)A縱坐標(biāo)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的方程為,過左焦點(diǎn)F1作斜率為的直線交雙曲線的右支于點(diǎn)P,且軸平分線段F1P,則雙曲線的離心率是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的長軸長是短軸長的倍,則橢圓的離心率等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知方程 表示焦點(diǎn)在y軸上的雙曲線,則k的取值范圍是(   )
A.3<k<9B.k>3C.k>9D.k<3

查看答案和解析>>

同步練習(xí)冊答案