【題目】如圖所示,ABCD﹣A1B1C1D1是棱長(zhǎng)為a的正方體,M、N分別是下底面的棱A1B1 , B1C1的中點(diǎn),P是上底面的棱AD上的一點(diǎn),AP= ,過(guò)P、M、N的平面交上底面于PQ,Q在CD上,則PQ= .
【答案】 a
【解析】∵平面ABCD∥平面A1B1C1D1 , MN平面ABCD
∴MN∥平面A1B1C1D1 , 又PQ=面PMN∩平面A1B1C1D1 ,
∴MN∥PQ.
∵M(jìn)、N分別是A1B1、B1C1的中點(diǎn)
∴MN∥A1C1∥AC,
∴PQ∥AC,又AP= ,ABCD﹣A1B1C1D1是棱長(zhǎng)為a的正方體,
∴CQ= ,從而DP=DQ= ,
∴PQ= = = a.
所以答案是: a
【考點(diǎn)精析】本題主要考查了平面與平面平行的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線平;可以由平面與平面平行得出直線與直線平行才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各命題作為原命題,分別寫出它們的逆命題、否命題和逆否命題.
(1)若α=β,則sin α=sin β;
(2)若對(duì)角線相等,則梯形為等腰梯形;
(3)已知a,b,c,d都是實(shí)數(shù),若a=b,c=d,則a+c=b+d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
單價(jià)x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
單價(jià)x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回歸直線方程,其中, ;
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷售收入-成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某城市有一條公路正西方AO通過(guò)市中心O后轉(zhuǎn)向北偏東α角方向的OB,位于該市的某大學(xué)M與市中心O的距離OM=3 km,且∠AOM=β,現(xiàn)要修筑一條鐵路L,L在OA上設(shè)一站A,在OB上設(shè)一站B,鐵路在AB部分為直線段,且經(jīng)過(guò)大學(xué)M,其中tanα=2,cosβ= ,AO=15km.
(1)求大學(xué)M在站A的距離AM;
(2)求鐵路AB段的長(zhǎng)AB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.已知a=3,cos A=,B=A+.
(1)求b的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,n∈N*.已知a1=1,a2=,a3=,且當(dāng)n≥2時(shí),4Sn+2+5Sn=8Sn+1+Sn-1.
(1)求a4的值;
(2)證明: 為等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, 底面為菱形,平面,點(diǎn)在棱上.
(Ⅰ)求證:直線平面;
(Ⅱ)若平面,求證:;
(Ⅲ)是否存在點(diǎn),使得四面體的體積等于四面體的體積的?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,甲船以每小時(shí)30海里的速度向正北方向航行,乙船按固定方向勻速直線航行.當(dāng)甲船位于A1處時(shí),乙船位于甲船的南偏西75°方向的B1處,此時(shí)兩船相距20海里.當(dāng)甲船航行20分鐘到達(dá)A2處時(shí),乙船航行到甲船的南偏西60°方向的B2處,此時(shí)兩船相距10海里.問(wèn):乙船每小時(shí)航行多少海里?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣6x+8,x∈[1,a],并且函數(shù)f(x)的最小值為f(a),則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com