若斜率為的直線l與橢圓=1(a>b>0)有兩個(gè)不同的交點(diǎn),且這兩個(gè)交點(diǎn)在x軸上的射影恰好是橢圓的兩個(gè)焦點(diǎn),則該橢圓的離心率為________.
由題意易知兩交點(diǎn)的橫坐標(biāo)為-c、c,縱坐標(biāo)分別為-,所以由得2b2ac=2(a2-c2),即2e2e-2=0,解得e=或e=-(負(fù)根舍去).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓經(jīng)過點(diǎn),其左、右頂點(diǎn)分別是、,左、右焦點(diǎn)分別是、,(異于、)是橢圓上的動(dòng)點(diǎn),連接交直線、兩點(diǎn),若成等比數(shù)列.

(1)求此橢圓的離心率;
(2)求證:以線段為直徑的圓過點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的焦點(diǎn)在軸上,離心率為,對稱軸為坐標(biāo)軸,且經(jīng)過點(diǎn)
(1)求橢圓的方程;
(2)直線與橢圓相交于、兩點(diǎn), 為原點(diǎn),在上分別存在異于點(diǎn)的點(diǎn)、,使得在以為直徑的圓外,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為、, 焦距為2,過作垂直于橢圓長軸的弦長為3
(1)求橢圓的方程;
(2)若過點(diǎn)的動(dòng)直線交橢圓于A、B兩點(diǎn),判斷是否存在直線使得為鈍角,若存在,求出直線的斜率的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,△ABC的頂點(diǎn)B、C的坐標(biāo)為B(-2,0),C(2,0),直線AB,AC的斜率乘積為,設(shè)頂點(diǎn)A的軌跡為曲線E.
(1)求曲線E的方程;
(2)設(shè)曲線E與y軸負(fù)半軸的交點(diǎn)為D,過點(diǎn)D作兩條互相垂直的直線l1,l2,這兩條直線與曲線E的另一個(gè)交點(diǎn)分別為M,N.設(shè)l1的斜率為k(k≠0),△DMN的面積為S,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓C:+y2=1的兩焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P(x0,y0)滿足≤1,則PF1+PF2的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,圓C:(x+1)2+y2=16,點(diǎn)F(1,0),E是圓C上的一個(gè)動(dòng)點(diǎn),EF的垂直平分線PQ與CE交于點(diǎn)B,與EF交于點(diǎn)D.

(1)求點(diǎn)B的軌跡方程;
(2)當(dāng)點(diǎn)D位于y軸的正半軸上時(shí),求直線PQ的方程;
(3)若G是圓C上的另一個(gè)動(dòng)點(diǎn),且滿足FG⊥FE,記線段EG的中點(diǎn)為M,試判斷線段OM的長度是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知分別是橢圓的左,右焦點(diǎn),現(xiàn)以為圓心作一個(gè)圓恰好經(jīng)過橢圓中心并且交橢圓于點(diǎn),若過的直線是圓的切線,則橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

F1,F(xiàn)2是橢圓+y2=1的左右焦點(diǎn),點(diǎn)P在橢圓上運(yùn)動(dòng).則的最大值是________.

查看答案和解析>>

同步練習(xí)冊答案