【題目】已知函數(shù)

)當(dāng)時(shí),求曲線處的切線方程;

)若函數(shù)在定義域內(nèi)不單調(diào),求的取值范圍

【答案】(1) ;(2) .

【解析】試題分析:(1)根據(jù)導(dǎo)數(shù)的幾何意義得到, ,進(jìn)而得到在處的切線方程為;(2)先求當(dāng)函數(shù)單調(diào)時(shí)參數(shù)的范圍,再求補(bǔ)集即可,函數(shù)在定義域內(nèi)單調(diào),等價(jià)于恒成立,或恒成立,即恒成立,或恒成立,等價(jià)于恒成立或恒成立,構(gòu)造函數(shù)研究函數(shù)的單調(diào)性求函數(shù)最值即可.

解析:

函數(shù)的定義域?yàn)?/span>,

導(dǎo)函數(shù)

)當(dāng)時(shí),因?yàn)?/span> ,

所以曲線處的切線方程為

,

設(shè)函數(shù)在定義域內(nèi)不單調(diào)時(shí), 的取值范圍是集合;

函數(shù)在定義域內(nèi)單調(diào)時(shí), 的取值范圍是集合,則

所以函數(shù)在定義域內(nèi)單調(diào)等價(jià)于恒成立,恒成立,

恒成立恒成立,

等價(jià)于恒成立或恒成立

,則,

,所以上單調(diào)遞增;

,所以上單調(diào)遞減

因?yàn)?/span>, ,且時(shí), ,

所以

所以,

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,求曲線在點(diǎn)處的切線方程;

(Ⅱ)若,求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù),函數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),不等式恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面六個(gè)句子中,錯(cuò)誤的題號是________.

①周期函數(shù)必有最小正周期;

②若至少有一個(gè)為;

為第三象限角,則;

④若向量的夾角為銳角,則;

⑤存在,,使成立;

⑥在中,O內(nèi)一點(diǎn),且,則O的重心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓,且圓與圓存在公共點(diǎn),則圓與直線的位置關(guān)系是(  )

A. 相切B. 相離C. 相交D. 相切或相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列 滿足: 的前項(xiàng)和為,并規(guī)定.定義集合, ,

(Ⅰ)對數(shù)列 , , , ,求集合

(Ⅱ)若集合, ,證明: ;

(Ⅲ)給定正整數(shù)對所有滿足的數(shù)列,求集合的元素個(gè)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知無窮數(shù)列的前n項(xiàng)和為,記, ,…, 中奇數(shù)的個(gè)數(shù)為

(Ⅰ)若= n,請寫出數(shù)列的前5項(xiàng);

(Ⅱ)求證:"為奇數(shù), (i = 2,3,4,...)為偶數(shù)”是“數(shù)列是單調(diào)遞增數(shù)列”的充分不必要條件;

(Ⅲ)若,i=1, 2, 3,…,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是  

A. 棱柱的側(cè)面都是平行四邊形

B. 所有面都是三角形的多面體一定是三棱錐

C. 用一個(gè)平面去截正方體,截面圖形可能是五邊形

D. 將直角三角形繞其直角邊所在直線旋轉(zhuǎn)一周所得的幾何體是圓錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線上的點(diǎn)與定點(diǎn)的距離與它到直線的距離的比是常數(shù),又斜率為的直線與曲線交于不同的兩點(diǎn)。

(Ⅰ)求曲線的方程;

(Ⅱ)若,求 的最大值;

(Ⅲ)設(shè),直線與曲線的另一個(gè)交點(diǎn)為,直線與曲線的另一個(gè)交點(diǎn)為.和點(diǎn) 共線,求的值。

查看答案和解析>>

同步練習(xí)冊答案