【題目】已知橢圓的離心率為,其過點(diǎn),其長軸的左右兩個(gè)端點(diǎn)分別為,直線交橢圓于兩點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線的斜率分別為,若,求的值.

【答案】(1)(2)

【解析】試題分析:(1)由橢圓的離心率為 ,且過點(diǎn) ,列出方程組,求出由此能求出橢圓方程;(2)聯(lián)立方程 ,由此利用根的判別式、韋達(dá)定理、直線方程,結(jié)合已知條件能求出 的值.

試題解析:(1)由題意的,解得,

所以橢圓的方程為.

(2)設(shè),聯(lián)立方程 ,得

所以判別式,

因?yàn)?/span>,

由題意知,所以,

因?yàn)?/span>,即,得

,所以,同理,

代入上式,解得,即,

所以,解得,

又因?yàn)?/span>,所以(舍去),所以.

【方法點(diǎn)晴】本題主要考查待定系數(shù)求橢圓方程、韋達(dá)定理以及直線與橢圓的位置關(guān)系,屬于難題.用待定系數(shù)法求橢圓方程的一般步驟;①作判斷:根據(jù)條件判斷橢圓的焦點(diǎn)在軸上,還是在軸上,還是兩個(gè)坐標(biāo)軸都有可能;②設(shè)方程:根據(jù)上述判斷設(shè)方程;③找關(guān)系:根據(jù)已知條件,建立關(guān)于、、的方程組;④得方程:解方程組,將解代入所設(shè)方程,即為所求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了增強(qiáng)市民的環(huán)境保護(hù)組織,某市面向全市征召n名義務(wù)宣傳志愿者,成立環(huán)境保護(hù)宣傳組織,現(xiàn)按年齡把該組織的成員分成5組:[20,25),[25,30),[30,35),[35,40),[40,45]. 得到的頻率分布直方圖如圖所示,已知該組織的成員年齡在[35,40)內(nèi)有20人

(1)求該組織的人數(shù);
(2)若從該組織年齡在[20,25),[25,30),[30,35)內(nèi)的成員中用分層抽樣的方法共抽取14名志愿者參加某社區(qū)的宣傳活動,問應(yīng)各抽取多少名志愿者?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={1,2,3,4,5,6},B={4,5,6,7,8},則滿足SA且S∩B≠的集合S的個(gè)數(shù)是(
A.57
B.56
C.49
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù), .(1)討論的極值點(diǎn)的個(gè)數(shù);(2)若對于,總有.(i)求實(shí)數(shù)的取值范圍;(ii)求證:對于,不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x+1)的定義域是[﹣1,3],則y=f(x2)的定義域是(
A.[0,4]
B.[0,16]
C.[﹣2,2]
D.[1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 并且滿足2Sn=an2+n,an>0(n∈N*).
(1)求a1 , a2 , a3;
(2)猜想{an}的通項(xiàng)公式,并加以證明;
(3)設(shè)x>0,y>0,且x+y=1,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓C: ,點(diǎn)A,B分別是左、右頂點(diǎn),過右焦點(diǎn)F的直線MN(異于x軸)交于橢圓C于M、N兩點(diǎn).

(1)若橢圓C過點(diǎn),且右準(zhǔn)線方程為,求橢圓C的方程;

(2)若直線BN的斜率是直線AM斜率的2倍,求橢圓C的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某運(yùn)動員每次投籃命中的概率低于40%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計(jì),該運(yùn)動員三次投籃恰有兩次命中的概率為( )
A.0.35
B.0.25
C.0.20
D.0.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)五邊形中,

,將沿折到的位置,得到四棱錐,如圖(2),點(diǎn)為線段的中點(diǎn),且平面.

(1)求證:平面平面

(2)若四棱柱的體積為,求四面體的體積.

查看答案和解析>>

同步練習(xí)冊答案