【題目】函數(shù), .(1)討論的極值點的個數(shù);(2)若對于,總有.(i)求實數(shù)的取值范圍;(ii)求證:對于,不等式成立.
【答案】(1)當時,函數(shù)有兩個極值點;當時,函數(shù)沒有極值點. (2)①②見解析
【解析】試題分析:(1)先求函數(shù)導數(shù),轉(zhuǎn)化為研究二次函數(shù)實根分布:當,導函數(shù)不變號,無極值;當,分時,兩個正根,有兩個極值點; 時,兩個負根,無極值點(2)①不等式恒成立問題利用變量分離轉(zhuǎn)化為對應(yīng)函數(shù)最值問題: ,再利用導數(shù)研究函數(shù)單調(diào)性,并得最小值,即得實數(shù)的取值范圍;②由①轉(zhuǎn)化證明,利用導數(shù)研究函數(shù)單調(diào)性,可得
試題解析: 解:由題意得 ,令,
(1)當,即時, 對恒成立,
即對恒成立,此時沒有極值點;
(2)當,即或,
①時,設(shè)方程兩個不同實根為,不妨設(shè),
則, ,故,
或時, ;在時,
故是函數(shù)的兩個極值點.
②時,設(shè)方程兩個不同實根為,
則, ,故, ,
時, ;故函數(shù)沒有極值點.
綜上,當時,函數(shù)有兩個極值點;
當時,函數(shù)沒有極值點.
(2)① , 在 單調(diào)遞減,在 單調(diào)遞增,所以
②只需證明 易得在 單調(diào)遞減,在 單調(diào)遞增, ,得證.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(x-3)ex+ax,aR
(1)當a=1時,求曲線f(x)在點(2,f(2))處的切線方程;
(2)當a[0,e)時,設(shè)函數(shù)f(x)在(1,+)上的最小值為g(a),求函數(shù)g(a)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學校本課程開設(shè)了A,B,C,D共4門選修課,每個學生必須且只能選修1門選修課,現(xiàn)有該校的甲、乙、丙3名學生.
(1)求這3名學生選修課所有選法的總數(shù);
(2)求恰有2門選修課沒有被這3名學生選擇的概率;
(3)求A選修課被這3名學生選擇的人數(shù)ξ的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“中國式過馬路”是網(wǎng)友對部分中國人集體闖紅燈現(xiàn)象的一種調(diào)侃,即“湊夠一撮人就可以走了,和紅綠燈無關(guān).”出現(xiàn)這種現(xiàn)象是大家受法不責眾的“從眾”心理影響,從而不顧及交通安全.某校對全校學生過馬路方式進行調(diào)查,在所有參與調(diào)查的人中,“跟從別人闖紅燈”“從不闖紅燈”“帶頭闖紅燈”人數(shù)如表所示:
跟從別人闖紅燈 | 從不闖紅燈 | 帶頭闖紅燈 | |
男生 | 800 | 450 | 200 |
女生 | 100 | 150 | 300 |
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n人,已知“跟從別人闖紅燈”的人中抽取45人,求n的值;
(2)在“帶頭闖紅燈”的人中,將男生的200人編號為1,2,…,200;將女生的300人編號為201,202,…,500,用系統(tǒng)抽樣的方法抽取4人參加“文明交通”宣傳活動,若抽取的第一個人的編號為100,把抽取的4人看成一個總體,從這4人中任選取2人,求這兩人均是女生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個袋子中裝有三個編號分別為1,2,3的紅球和三個編號分別為1,2,3的白球,三個紅球按其編號分別記為a1 , a2 , a3 , 三個白球按其編號分別記為b1 , b2 , b3 , 袋中的6個球除顏色和編號外沒有任何差異,現(xiàn)從袋中一次隨機地取出兩個球,
(1)列舉所有的基本事件,并寫出其個數(shù);
(2)規(guī)定取出的紅球按其編號記分,取出的白球按其編號的2倍記分,取出的兩個球的記分之和為一次取球的得分,求一次取球的得分不小于6的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sinx﹣cosx+x+1,x∈[0,2π]
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)的極小值和最大值,并寫明取到極小值和最大值時分別對應(yīng)x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,其過點,其長軸的左右兩個端點分別為,直線交橢圓于兩點.
(1)求橢圓的標準方程;
(2)設(shè)直線的斜率分別為,若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3x
(1)討論f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=f(x)﹣m在[﹣ ,3]上有三個零點,求實數(shù)m的取值范圍;
(3)設(shè)函數(shù)h(x)=ex﹣ex+4n2﹣2n(e為自然對數(shù)的底數(shù)),如果對任意的x1 , x2∈[ ,2],都有f(x1)≤h(x2)恒成立,求實數(shù)n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某印刷廠為了研究印刷單冊書籍的成本y(單位:元)與印刷冊數(shù)x(單位:千冊)之間的關(guān)系,在印制某種書籍時進行了統(tǒng)計,相關(guān)數(shù)據(jù)見下表:
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到了兩個回歸方程,甲:
為了評價兩種模型的擬合效果,完成以下任務(wù):
(1)(。┩瓿上卤恚ㄓ嬎憬Y(jié)果精確到0.1):
(ⅱ)分別計算模型甲與模型乙的殘差平方和及,并通過比較,的大小,判斷哪個模型擬合效果更好.
(2)該書上市后,受到廣大讀者的熱烈歡迎,不久便全部售罄,于是印刷廠決定進行二次印刷,根據(jù)市場調(diào)查,新需求量為8千冊(概率為0.8)或10千冊(概率為0.2),若印刷廠以沒測5元的價格將書籍出售給訂貨商,問印刷廠二次印刷8千冊還是10千冊恒獲得更多的利潤?(按(1)中擬合效果較好的模型計算印刷單冊書的成本)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com