【題目】《數書九章》是中國南宋時期杰出數學家秦九韶的著作,其中在卷五“三斜求積”中提出了已知三角形三邊、、,求面積的公式,這與古希臘的海倫公式完全等價,其求法是“以小斜冥并大斜冥減中斜冥,余半之,自乘于上,以小斜冥乘大斜冥減上,余四約之,為實.一為從隅,開平方得積”若把以上這段文字寫出公式,即若,則.
(1)已知的三邊,,,且,求證:的面積.
(2)若,,求的面積的最大值.
科目:高中數學 來源: 題型:
【題目】(多選題)下列說法中正確的是( )
A.在頻率分布直方圖中,中位數左邊和右邊的直方圖的面積相等.
B.若A、B為互斥事件,則A的對立事件與B的對立事件一定互斥.
C.某個班級內有40名學生,抽10名同學去參加某項活動,則每4人中必有1人抽中.
D.若回歸直線的斜率,則變量與正相關.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,圓:經過伸縮變換,后得到曲線以坐標原點為極點,x軸的正半軸為極軸,并在兩種坐標系中取相同的單位長度,建立極坐標系,直線l的極坐標方程為
求曲線的直角坐標方程及直線l的直角坐標方程;
在上求一點M,使點M到直線l的距離最小,并求出最小距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“雙十一”期間,某淘寶店主對其商品的上架時間(小時)和銷售量(件)的關系作了統(tǒng)計,得到了如下數據并研究.
上架時間 | 2 | 4 | 6 | 8 | 10 | 12 |
銷售量 | 64 | 138 | 205 | 285 | 360 | 430 |
(1)求表中銷售量的平均數和中位數;
(2)① 作出散點圖,并判斷變量與是否線性相關?若研究的方案是先根據前5組數據求線性回歸方程,再利用第6組數據進行檢驗,求線性回歸方程;
②若根據①中線性回歸方程得到商品上架12小時的銷售量的預測值與檢測值不超過3件,則認為得到的線性回歸方程是理想的,試問:①中的線性回歸方程是否理想.
附:線性回歸方程中, .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了保護環(huán)境,某工廠在政府部門的支持下,進行技術改進:把二氧化碳轉化為某種化工產品,經測算,該處理成本y(萬元)與處理量x(噸)之間的函數關系可近似地表示為:,且每處理一噸二氧化碳可得價值為20萬元的某種化工產品.
(1)當時,判斷該技術改進能否獲利?如果能獲利,求出最大利潤;如果不能獲利,則國家至少需要補貼多少萬元,該工廠才不虧損?
(2)當處理量為多少噸時,每噸的平均處理成本最少.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】自2017年2月底,90多所自主招生試點高校將陸續(xù)出臺2017年自主招生簡章,某校高三年級選取了在期中考試中成績優(yōu)異的100名學生作為調查對象,對是否準備參加2017年的自主招生考試進行了問卷調查,其中“準備參加”“不準備參加”和“待定”的人數如表:
準備參加 | 不準備參加 | 待定 | |
男生 | 30 | 6 | 15 |
女生 | 15 | 9 | 25 |
(1)在所有參加調查的同學中,在三種類型中用分層抽樣的方法抽取20人進行座談交流,則在“準備參加”“不準備參加”和“待定”的同學中應各抽取多少人?
(2)在“準備參加”的同學中用分層抽樣方法抽取6人,從這6人中任意抽取2人,求至少有一名女生的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com