15.在△ABC中,角A,B,C的對(duì)邊分別為a、b、c,則“sinA>sinB”是“a>b”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 在三角形中,結(jié)合正弦定理,利用充分條件和必要條件的定義進(jìn)行判斷.

解答 解:在三角形中,若a>b,由正弦定理$\frac{a}{sinA}$=$\frac{sinB}$,得sinA>sinB.
若sinA>sinB,則正弦定理$\frac{a}{sinA}$=$\frac{sinB}$,得a>b,
則“sinA>sinB”是“a>b”的充要條件.
故選:C

點(diǎn)評(píng) 本題主要考查了充分條件和必要條件的應(yīng)用,利用正弦定理確定邊角關(guān)系,是解決本題的關(guān)鍵..

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x+$\frac{1}{2}$)=$\frac{{x}^{2}+xcosx+2017}{{x}^{2}+2017}$,則$\sum_{i=1001}^{1016}$f($\frac{i}{2017}$)=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足an+2=$\left\{\begin{array}{l}{{a}_{n}+2,n為奇數(shù)}\\{2{a}_{n},n為偶數(shù)}\end{array}\right.$,n∈N*,且a1=1,a2=2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=(-1)nanan+1,n∈N*,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.根據(jù)此程序框圖輸出S的值為$\frac{11}{12}$,則判斷框內(nèi)應(yīng)填入的是( 。
A.i≤8?B.i≤6?C.i≥8?D.i≥6?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.定義:若存在實(shí)數(shù)x1∈[-2,-1],x2∈[a,32]使2${\;}^{-{x}_{1}}$=log2x2成立,則稱a為指對(duì)實(shí)數(shù),那么在a∈[-20,20]上成為指對(duì)實(shí)數(shù)的概率是$\frac{9}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.非零向量$\overrightarrow{m}$,$\overrightarrow{n}$的夾角為$\frac{π}{3}$,且滿足|$\overrightarrow{n}$|=λ|$\overrightarrow{m}$|(λ>0),向量組$\overrightarrow{{x}_{1}}$,$\overrightarrow{{x}_{2}}$,$\overrightarrow{{x}_{3}}$由一個(gè)$\overrightarrow{m}$和兩個(gè)$\overrightarrow{n}$排列而成,向量組$\overrightarrow{{y}_{1}}$,$\overrightarrow{{y}_{2}}$,$\overrightarrow{{y}_{3}}$由兩個(gè)$\overrightarrow{m}$和一個(gè)$\overrightarrow{n}$排列而成,若$\overrightarrow{{x}_{1}}$•$\overrightarrow{{y}_{1}}$+$\overrightarrow{{x}_{2}}$•$\overrightarrow{{y}_{2}}$+$\overrightarrow{{x}_{3}}$•$\overrightarrow{{y}_{3}}$所有可能值中的最小值為4$\overrightarrow{m}$2,則λ=$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.定義在R上的函數(shù)y=f(x),當(dāng)x∈[0,2]時(shí),f(x)=4(1-|x-1|),且對(duì)任意實(shí)數(shù)x∈[2n-2,2n+1-2](n∈N*,n≥2),都有f(x)=$\frac{1}{2}$f($\frac{x}{2}$-1).若g(x)=f(x)-logax有且僅有3個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.[2,10]B.[$\sqrt{2}$,$\sqrt{10}$]C.(2,10)D.[2,10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,若a2sinC=4sinA,cosB=$\frac{\sqrt{7}}{4}$,則△ABC的面積為(  )
A.1B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.雙曲線的焦點(diǎn)到漸近線的距離等于半實(shí)軸長(zhǎng),則該雙曲線的離心率等于( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案