【題目】已知函數(shù)y=f(x+3)是偶函數(shù),則函數(shù)y=f(x)圖像的對稱軸為直線( )
A.x=﹣3
B.x=0
C.x=3
D.x=6
【答案】C
【解析】解:函數(shù)y=f(x+3)是偶函數(shù),其圖像關(guān)于y軸,即直線x=0對稱, 函數(shù)y=f(x)圖像由函數(shù)y=f(x+3)的圖像向右平移3個單位得到,
故函數(shù)y=f(x)圖像關(guān)于直線x=3對稱,
故選:C.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)奇偶性的性質(zhì),需要了解在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞減的函數(shù)是( )
A.y=2x3
B.y=|x|+1
C.y=﹣x2+4
D.y=2|x|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若A={x|﹣1<x<2},B={x|1<x<3},則A∩B=( )
A.{x|1<x<2}
B.{x|﹣1<x<3}
C.{x|1<x<3}
D.{x|﹣1<x<2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的不等式|x﹣3|+|x﹣4|≤|a|的解集為空集.
(1)求實(shí)數(shù)a的取值范圍;
(2)若實(shí)數(shù)b與實(shí)數(shù)a取值范圍完全相同,求證:|1﹣ab|>|a﹣b|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空間二直線a,b和二平面α,β,下列一定成立的命題是( )
A.若α⊥β,a⊥b,a⊥α,則b⊥β
B.若α⊥β,a⊥b,a⊥α,則b∥β
C.若α⊥β,a∥α,b∥β,則a⊥b
D.若α∥β,a⊥α,bβ,則a⊥b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|1≤x≤4},B={x|x>2},那么A∪B=( )
A.(2,4)
B.(2,4]
C.[1,+∞)
D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面α,β和直線m,給出條件:①mα;②m⊥α;③m∥α;④α∥β;⑤α⊥β.為使m∥β,應(yīng)選擇下面四個選項(xiàng)中的條件( )
A.①⑤
B.①④
C.②⑤
D.③⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com