【題目】已知橢圓:的離心率為,且經(jīng)過點(diǎn)
Ⅰ求橢圓的標(biāo)準(zhǔn)方程;
Ⅱ已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,過點(diǎn)的動(dòng)直線與拋物線相交于A,B兩個(gè)不同的點(diǎn),在線段AB上取點(diǎn)Q,滿足,證明:點(diǎn)Q總在定直線上.
【答案】(Ⅰ);(Ⅱ)詳見解析.
【解析】
Ⅰ由題意可知解得,,即可求出橢圓方程,
Ⅱ設(shè)點(diǎn)Q,A,B的坐標(biāo)分別為,,,根據(jù)題意設(shè),,,分別求出點(diǎn)A,B的坐標(biāo),即可證明點(diǎn)Q總在定直線上。
解:Ⅰ由題意可知解得,,
故橢圓的方程為.
證明Ⅱ由已知可得拋物線的標(biāo)準(zhǔn)方程為,
設(shè)點(diǎn)Q,A,B的坐標(biāo)分別為,,,
由題意知,不妨設(shè)A在P,Q之間,設(shè),,
又點(diǎn)Q在P,B之間,故,
,
,
由可得解得,,
點(diǎn)A在拋物線上,
,
即,,
由可得解得,,
點(diǎn)B在拋物線上,
,
即,,.
由可得,
,
,
點(diǎn)Q總在定直線上
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某校高一1000名學(xué)生的物理成績(jī),隨機(jī)抽查了部分學(xué)生的期中考試成績(jī),將數(shù)據(jù)整理后繪制成如圖所示的頻率分布直方圖.
(1)估計(jì)該校高一學(xué)生物理成績(jī)不低于80分的人數(shù);
(2)若在本次考試中,規(guī)定物理成績(jī)?cè)?/span>m分以上(包括m分)的為優(yōu)秀,該校學(xué)生物理成績(jī)的優(yōu)秀率大約為18%,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾。疄榱私饽呈行姆渭膊∈欠衽c性別有關(guān),在某醫(yī)院隨機(jī)的對(duì)入院50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計(jì) | |
男 | 5 | ||
女 | 10 | ||
合計(jì) | 50 |
已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為 .
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;
下面的臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式 其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知是定義在上的奇函數(shù),求實(shí)數(shù)、的值;
(2)已知是定義在上的函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右頂點(diǎn)分別為,,上頂點(diǎn)為B,右焦點(diǎn)為F,已知直線的傾斜角為120°,.
(1)求橢圓C的方程;
(2)設(shè)P為橢圓C上不同于,的一點(diǎn),O為坐標(biāo)原點(diǎn),線段的垂直平分線交于M點(diǎn),過M且垂直于的直線交y軸于Q點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在拋物線:的準(zhǔn)線上,過點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,.
(1)證明:為定值;
(2)當(dāng)點(diǎn)在軸上時(shí),過點(diǎn)作直線,交拋物線于,兩點(diǎn),滿足.問:直線是否恒過定點(diǎn),若存在定點(diǎn),求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中高一,高二,高三的模聯(lián)社團(tuán)的人數(shù)分別為35,28,21,現(xiàn)采用分層抽樣的方法從中抽取部分學(xué)生參加模聯(lián)會(huì)議,已知在高二年級(jí)和高三年級(jí)中共抽取7名同學(xué).
(Ⅰ)應(yīng)從高一年級(jí)選出參加會(huì)議的學(xué)生多少名?
(Ⅱ)設(shè)高二,高三年級(jí)抽出的7名同學(xué)分別用表示,現(xiàn)從中隨機(jī)抽取名同學(xué)承擔(dān)文件翻譯工作.
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設(shè)為事件“抽取的兩名同學(xué)來自同一年級(jí)”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點(diǎn)為,上頂點(diǎn)為,直線的斜率為,且原點(diǎn)到直線的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若不經(jīng)過點(diǎn)的直線:與橢圓交于兩點(diǎn),且與圓相切.試探究的周長(zhǎng)是否為定值,若是,求出定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等邊△ABC中,AC=4,D是邊AC上的點(diǎn)(不與A,C重合),過點(diǎn)D作DE∥BC交AB于點(diǎn)E,沿DE將△ADE向上折起,使得平面ADE⊥平面BCDE,如圖2所示.
(1)若異面直線BE與AC垂直,確定圖1中點(diǎn)D的位置;
(2)證明:無論點(diǎn)D的位置如何,二面角D﹣AE﹣B的余弦值都為定值,并求出這個(gè)定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com