已知為實數(shù),數(shù)列滿足,當(dāng)時,

(Ⅰ);(5分)

(Ⅱ)證明:對于數(shù)列,一定存在,使;(5分)

(Ⅲ)令,當(dāng)時,求證:(6分)

 

【答案】

(Ⅰ);(Ⅱ)詳見解析;(Ⅲ)詳見解析

【解析】

試題分析:(Ⅰ)根據(jù)題意可得當(dāng)時,成等差數(shù)列,當(dāng)時,,可見由得出前項成等差數(shù)列,項以后奇數(shù)項為,偶數(shù)項為,這樣結(jié)合等差數(shù)列的前項公式就可求出;(Ⅱ)以為界對進行分類討論,當(dāng)時,顯然成立;當(dāng)時,由題中所給數(shù)列的遞推關(guān)系,不難得到;當(dāng)時,得,可轉(zhuǎn)化為當(dāng)時的情況,命題即可得證; (Ⅲ)由可得,根據(jù)題中遞推關(guān)系可得出,進而可得出=,又,由于要對分奇偶性,故可將相鄰兩整數(shù)當(dāng)作一個整體,要證不等式可進行適當(dāng)放縮,要對分奇偶性,并結(jié)合數(shù)列求和的知識分別進行證明即可.

試題解析:(Ⅰ)由題意知數(shù)列的前34項成首項為100,公差為-3的等差數(shù)列,從第35項開始,奇數(shù)項均為3,偶數(shù)項均為1,從而= (3分)

=.        (5分)

(Ⅱ)證明:①若,則題意成立                 (6分)

②若,此時數(shù)列的前若干項滿足,即.

設(shè),則當(dāng)時,.

從而此時命題成立                    (8分)

③若,由題意得,則由②的結(jié)論知此時命題也成立.

綜上所述,原命題成立                   (10分)

(Ⅲ)當(dāng)時,因為,

所以=       (11分)

因為>0,所以只要證明當(dāng)時不等式成立即可.

             (13分)

①當(dāng)時,

  (15分)

②當(dāng)時,由于>0,所以<

綜上所述,原不等式成立                      (16分)

考點:1.數(shù)列的遞推關(guān)系;2.等差,等比數(shù)列的前n項和;3.不等式的證明

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年揚州中學(xué)2月月考)(16分)已知為實數(shù),數(shù)列滿足,當(dāng)時,,

(Ⅰ);(5分)

(Ⅱ)證明:對于數(shù)列,一定存在,使;(5分)

(Ⅲ)令,當(dāng)時,求證:(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省山一中高三熱身練理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)

已知為實數(shù),數(shù)列滿足,當(dāng)時,

(1)當(dāng)時,求數(shù)列的前100項的和;

(2)證明:對于數(shù)列,一定存在,使;

(3)令,當(dāng)時,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省高考壓軸理科數(shù)學(xué)試卷(解析版) 題型:選擇題

.已知函數(shù),若數(shù)列滿足,且單調(diào)遞增,則實數(shù)的取值范圍為(       )

A.        B.             C.              D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆四川省高一下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:解答題

若數(shù)列滿足,其中為常數(shù),則稱數(shù)列為等方差數(shù)列,已知等方差數(shù)列滿足,.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和;

(3)記,則當(dāng)實數(shù)大于4時,不等式能否對于一切的恒成立?請說明理由。

 

查看答案和解析>>

同步練習(xí)冊答案