【題目】設(shè)函數(shù),若對于任意,恒成立,則的取值范圍是__________.
【答案】
【解析】
由題意得出對于任意,,轉(zhuǎn)化為不等式組對任意的恒成立,分析二次函數(shù)在區(qū)間上的單調(diào)性,轉(zhuǎn)化為關(guān)于函數(shù)最值的不等式來求解,從而可得出實(shí)數(shù)的取值范圍.
由題意得出對于任意,,
則不等式組對任意的恒成立.
先考查二次不等式對任意的恒成立.
構(gòu)造函數(shù),該二次函數(shù)圖象開口向上,對稱軸為直線.
因?yàn)?/span>恒成立,所以,此時(shí),函數(shù)在區(qū)間上單調(diào)遞增,則,解得或;
下面來考查不等式對任意的恒成立,則.
構(gòu)造函數(shù).
①當(dāng)時(shí),即當(dāng).
若,則,當(dāng)時(shí),,不合乎題意;
若,則,合乎題意;
②當(dāng)時(shí),即當(dāng)時(shí),二次函數(shù)的圖象開口向下,對稱軸為直線.
當(dāng)時(shí),即當(dāng)時(shí),函數(shù)在上單調(diào)遞減,則,解得,此時(shí),;
當(dāng)時(shí),即當(dāng)或時(shí),,解得,此時(shí),.
由上可知,當(dāng)時(shí),不等式對任意的恒成立.
綜上所述,當(dāng)時(shí),不等式對任意的恒成立.
因此,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)a=1時(shí),求:①函數(shù)在點(diǎn)P(1,)處的切線方程;②函數(shù)的單調(diào)區(qū)間和極值;
(2)若不等式恒成立,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題:實(shí)數(shù)滿足,其中,命題:實(shí)數(shù)滿足.
(1)若,且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx+c,其圖象與y軸的交點(diǎn)為(0,1),且滿足f(1﹣x)=f(1+x).
(1)求f(x);
(2)設(shè) ,m>0,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf(x),若對于一切x∈[0,1],不等式h(x+1﹣t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是圓: 上任意一點(diǎn),點(diǎn)與圓心關(guān)于原點(diǎn)對稱.線段的中垂線與交于點(diǎn).
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn),若直線軸且與曲線交于另一點(diǎn),直線與直線交于點(diǎn),證明:點(diǎn)恒在曲線上,并求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓 的離心率為,兩條準(zhǔn)線之間的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知橢圓的左頂點(diǎn)為,點(diǎn)在圓上,直線與橢圓相交于另一點(diǎn),且的面積是的面積的倍,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列所給4個(gè)圖象中,與所給3件事吻合最好的順序?yàn)?( )
①我離開學(xué)校不久,發(fā)現(xiàn)自己把作業(yè)本忘在教室,于是立刻返回教室里取了作業(yè)本再回家;
②我放學(xué)回家騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時(shí)間;
③我放學(xué)從學(xué)校出發(fā)后,心情輕松,緩緩行進(jìn),后來為了趕時(shí)間開始加速.
A.(1)(2)(4)B.(4)(1)(2)C.(4)(1)(3)D.(4)(2)(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價(jià)格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進(jìn)行促銷:一次購買水果的總價(jià)達(dá)到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會(huì)得到支付款的80%.
①當(dāng)x=10時(shí),顧客一次購買草莓和西瓜各1盒,需要支付__________元;
②在促銷活動(dòng)中,為保證李明每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),解不等式:;
(2)當(dāng)時(shí),存在最小值,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com