已知函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0)上單調(diào)遞減,且有f(3)=0,則使得f(x)<0的x的范圍為


  1. A.
    (-∞,3)
  2. B.
    (3,+∞)
  3. C.
    (-∞,3)∪(3,+∞)
  4. D.
    (-3,3)
D
分析:由f(x)為偶函數(shù),f(x)在(-∞,0)上的單調(diào)性,可判斷f(x)在(0,+∞)上的單調(diào)性,
由f(3)=0,可得f(-3)=0,從而據(jù)題意可作出f(x)的草圖,由圖象即可解得不等式.
解答:解:因?yàn)閒(x)在(-∞,0)上單調(diào)遞減,又f(x)為R上的偶函數(shù),
所以f(x)在(0,+∞)上單調(diào)遞增,
由f(3)=0可得f(-3)=0,
作出滿(mǎn)足題意的函數(shù)f(x)的草圖,如圖:
由圖象可得,使得f(x)<0的x的范圍為(-3,3).
故選D.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性、單調(diào)性及其應(yīng)用,數(shù)形結(jié)合解決本題簡(jiǎn)潔直觀(guān),注意體會(huì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2
,
(1)計(jì)算:[f(1)]2-[g(1)]2;
(2)證明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域?yàn)椋?,+∞),且f(2)=2+
2
2
.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線(xiàn)y=x和y軸的垂線(xiàn),垂足分別為M、N.
(1)求a的值.
(2)問(wèn):|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請(qǐng)說(shuō)明理由.
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿(mǎn)足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點(diǎn),且x1+x2=1.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn;
(3)在(2)的條件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項(xiàng)和.求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線(xiàn)y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長(zhǎng)度是一個(gè)定值,則AB的值是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案