已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點,且x1+x2=1.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的條件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項和.求Tn
分析:(1)先根據(jù)函數(shù)的表達式求y1+y2=log3
3
x1
1-x1
+lo3
3
x2
1-x2
=lo3
3x1x2
1-(x1+x2)+x1x2
,再結(jié)合x1+x2=1即可得出答案;
(2)由(1)知當x1+x2=1時,y1+y2=f(x1)+f(x2)=1,從而有Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)①再將此式倒序又得一式:Sn=f(
n-1
n
)+…+f(
2
n
)+f(
1
n
)兩式相加即可;
(3)當n≥2時,an=
1
n+1
-
1
n+2
,從而利用裂項求和法即可得出Tn結(jié)果.
解答:解:(1)證明:由x1+x2=1,
y1+y2=log3
3
x1
1-x1
+lo3
3
x2
1-x2
=lo3
3x1x2
1-(x1+x2)+x1x2
=1,
(2)由(1)知當x1+x2=1時,y1+y2=f(x1)+f(x2)=1
Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)①
Sn=f(
n-1
n
)+…+f(
2
n
)+f(
1
n
)  ②
①+②得Sn=
n-1
2

(3)當n≥2時,
an=
1
n+1
2
n+2
2
=
1
n+1
-
1
n+2

又當n=1時,a1=
1
6
所以an=
1
n+1
-
1
n+2

故Tn=(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n+1
-
1
n+2
)=
n
2(n+2)
點評:本題主要考查數(shù)列與函數(shù)的綜合,以及綜合運用上述知識分析問題和解決問題的能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案