【題目】若關(guān)于x的不等式的解集為,且中只有一個(gè)整數(shù),則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

【答案】C

【解析】

由題意設(shè)gx)=xexyaxa,將條件轉(zhuǎn)化為:gx)=xex與直線yaxa的位置關(guān)系,求出g′(x)后,由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系判斷出gx)的單調(diào)性,畫出兩個(gè)函數(shù)的圖象,結(jié)合函數(shù)圖象和斜率公式求出KPAKPB,可得a的取值范圍.

解:由題意設(shè)gx)=xex,yaxa,

g′(x)=(x+1ex,

gx)在(﹣∞,﹣1)遞減,在(﹣1,+∞)遞增,

gxming(﹣1,

yaxa恒過定點(diǎn)P10),

∴結(jié)合函數(shù)圖象得,KPAaKPB,

A(﹣2),B(﹣1,),

KPA,KPB,即a,

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小張經(jīng)營(yíng)某一消費(fèi)品專賣店,已知該消費(fèi)品的進(jìn)價(jià)為每件40元,該店每月銷售量(百件)與銷售單價(jià)x(元/件)之間的關(guān)系用下圖的一折線表示,職工每人每月工資為1000元,該店還應(yīng)交付的其它費(fèi)用為每月10000元.

(1)把y表示為x的函數(shù);

(2)當(dāng)銷售價(jià)為每件50元時(shí),該店正好收支平衡(即利潤(rùn)為零),求該店的職工人數(shù);

(3)若該店只有20名職工,問銷售單價(jià)定為多少元時(shí),該專賣店可獲得最大月利潤(rùn)?(注:利潤(rùn)=收入-支出)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若的零點(diǎn)為2,求;

2)若上單調(diào)遞減,求的最小值;

3)若對(duì)于任意的都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過圓 上的點(diǎn) 軸的垂線,垂足為 ,點(diǎn) 滿足 .當(dāng) 上運(yùn)動(dòng)時(shí),記點(diǎn) 的軌跡為 .

(1)求 的方程;

(2)過點(diǎn) 的直線交于 , 兩點(diǎn),與圓 交于 兩點(diǎn),求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠家為了了解一款產(chǎn)品的質(zhì)量,隨機(jī)抽取200名男性使用者和100名女性使用者,對(duì)該款產(chǎn)品進(jìn)行評(píng)分,繪制出如下頻率分布直方圖.

(1)利用組中值(數(shù)據(jù)分組后,一個(gè)小組的組中值是指這個(gè)小組的兩個(gè)端點(diǎn)的數(shù)的平均數(shù)),估計(jì)100名女性使用者評(píng)分的平均值;

(2)根據(jù)評(píng)分的不同,運(yùn)用分層抽樣從這200名男性中抽取20名,在這20名中,從評(píng)分不低于80分的人中任意抽取3名,求這3名男性中恰有一名評(píng)分在區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)設(shè)對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖的程序框圖中,若輸入,,則輸出的值是( )

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/21/1907086498037760/1907898837975040/STEM/25d20caaa911497ea3baaf4f7dee45a3.png]

A. 3 B. 7 C. 11 D. 33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),其中為指數(shù)函數(shù),且的圖象過定點(diǎn)

1)求函數(shù)的解析式;

2)若關(guān)于x的方程,有解,求實(shí)數(shù)a的取值范圍;

3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是菱形,交BD于點(diǎn),是邊長(zhǎng)為2的正三角形,分別是的中點(diǎn).

(1)求證:EF//平面SAD;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案