【題目】已知函數(shù).
(1)若的零點為2,求;
(2)若在上單調(diào)遞減,求的最小值;
(3)若對于任意的都有,求的取值范圍.
【答案】(1); (2); (3).
【解析】
(1)由的零點為2,即,得到,即可求解實數(shù)的值;
(2)求得函數(shù)的定義域即函數(shù)的定義域為且,設(shè),
根據(jù)復(fù)數(shù)函數(shù)的單調(diào)性,得到,即可求解;
(3)由(2)中函數(shù)的定義域,利用復(fù)合數(shù)函數(shù)的單調(diào)性,要使得對于任意的都有,得到,即可求解.
(1)由題意,函數(shù),
因為的零點為2,即,所以,
即,則,即,解得.
(2)由,
可得函數(shù)滿足,解得且,
即函數(shù)的定義域為,
又由函數(shù),
設(shè),
要使得函數(shù)在上單調(diào)遞減,
根據(jù)復(fù)合函數(shù)的單調(diào)性,可得函數(shù)在上單調(diào)遞減,且在恒成立,
所以,解得或,
又因為,所以,即實數(shù)的最小值為.
(3)由(2)得,函數(shù)的定義域為且
根據(jù)復(fù)合函數(shù)的單調(diào)性,可得函數(shù)在區(qū)間上單調(diào)遞減,
要使得對于任意的都有,
可得,即,解得,
即實數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點處的切線方程;
(2)函數(shù)與函數(shù)的圖像總有兩個交點,設(shè)這兩個交點的橫坐標(biāo)分別為,.
(。┣的取值范圍;
(ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國城市空氣污染指數(shù)范圍及相應(yīng)的空氣質(zhì)量類別見下表:
空氣污染指數(shù) | 空氣質(zhì)量 | 空氣污染指數(shù) | 空氣質(zhì)量 | |
0--50 | 優(yōu) | 201--250 | 中度污染 | |
51--100 | 良 | 251--300 | 中度重污染 | |
101--150 | 輕微污染 | >300 | 重污染 | |
151----200 | 輕度污染 |
我們把某天的空氣污染指數(shù)在0-100時稱作A類天,101--200時稱作B類天,大于200時稱作C類天.下圖是某市2014年全年監(jiān)測數(shù)據(jù)中隨機抽取的18天數(shù)據(jù)作為樣本,其莖葉圖如下:(百位為莖,十.個位為葉)
(1)從這18天中任取3天,求至少含2個A類天的概率;
(2)從這18天中任取3天,記X是達到A類或B類天的天數(shù),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)證明:當(dāng)時,函數(shù)在上是單調(diào)函數(shù);
(2)當(dāng)時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(選修4-5:不等式選講)
設(shè)函數(shù)
(1)若a=1,試求的解集;
(2)若a>0,且關(guān)于x的不等式有解,求實數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為提高員工的綜合素質(zhì),聘請專業(yè)機構(gòu)對員工進行專業(yè)技術(shù)培訓(xùn),其中培訓(xùn)機構(gòu)費用成本為12000元.公司每位員工的培訓(xùn)費用按以下方式與該機構(gòu)結(jié)算:若公司參加培訓(xùn)的員工人數(shù)不超過30人時,每人的培訓(xùn)費用為850元;若公司參加培訓(xùn)的員工人數(shù)多于30人,則給予優(yōu)惠:每多一人,培訓(xùn)費減少10元.已知該公司最多有60位員工可參加培訓(xùn),設(shè)參加培訓(xùn)的員工人數(shù)為人,每位員工的培訓(xùn)費為元,培訓(xùn)機構(gòu)的利潤為元.
(1)寫出與 之間的函數(shù)關(guān)系式;
(2)當(dāng)公司參加培訓(xùn)的員工為多少人時,培訓(xùn)機構(gòu)可獲得最大利潤?并求最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的不等式的解集為,且中只有一個整數(shù),則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間上是單調(diào)函數(shù).
(1)求實數(shù)的所有取值組成的集合;
(2)試寫出在區(qū)間上的最大值;
(3)設(shè),令,若對任意,總有,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com