【題目】已知函數(shù),其中為常數(shù).

1)若,求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)在區(qū)間上為單調(diào)遞減函數(shù),求的取值范圍.

【答案】1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2

【解析】

1)將代入函數(shù)解析式,再求得導(dǎo)函數(shù),并令求得極值點(diǎn),即可確定的符號,確定單調(diào)區(qū)間.

2)先求得導(dǎo)函數(shù),由函數(shù)在區(qū)間上為單調(diào)遞減函數(shù),可得在區(qū)間上恒成立,即.構(gòu)造函數(shù),即可由函數(shù)單調(diào)性求得,解不等式即可求得的取值范圍.

1)當(dāng)時,,其定義域為

,

,解得.

當(dāng)時,,故函數(shù)在區(qū)間上單調(diào)遞增;

當(dāng)時,,故函數(shù)在區(qū)間上單調(diào)遞減.

所以的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

2)由題意得,

因為函數(shù)在區(qū)間上為單調(diào)遞減函數(shù),

所以在區(qū)間恒成立,

時恒成立,

,其中

,

易知函數(shù)上單調(diào)遞增,故.

所以,

,

解得;

的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】紅鈴蟲是棉花的主要害蟲之一,能對農(nóng)作物造成嚴(yán)重傷害,每只紅鈴蟲的平均產(chǎn)卵數(shù)y和平均溫度x有關(guān),現(xiàn)收集了以往某地的7組數(shù)據(jù),得到下面的散點(diǎn)圖及一些統(tǒng)計量的值.(表中

平均溫度

21

23

25

27

29

32

35

平均產(chǎn)卵數(shù)/

7

11

21

24

66

115

325

27.429

81.286

3.612

40.182

147.714

1)根據(jù)散點(diǎn)圖判斷,(其中自然對數(shù)的底數(shù))哪一個更適宜作為平均產(chǎn)卵數(shù)y關(guān)于平均溫度x的回歸方程類型?(給出判斷即可,不必說明理由)并由判斷結(jié)果及表中數(shù)據(jù),求出y關(guān)于x的回歸方程.(計算結(jié)果精確到小數(shù)點(diǎn)后第三位)

2)根據(jù)以往統(tǒng)計,該地每年平均溫度達(dá)到28℃以上時紅鈴蟲會造成嚴(yán)重傷害,需要人工防治,其他情況均不需要人工防治記該地每年平均溫度達(dá)到28℃以上的概率為.

①記該地今后5年中,恰好需要3次人工防治的概率為,求的最大值,并求出相應(yīng)的概率p.

②當(dāng)取最大值時,記該地今后5年中,需要人工防治的次數(shù)為X,求X的數(shù)學(xué)期望和方差.

附:線性回歸方程系數(shù)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是我國20181月至12月石油進(jìn)口量統(tǒng)計圖(其中同比是今年第個月與去年第個月之比),則下列說法錯誤的是(

A.2018年下半年我國原油進(jìn)口總量高于2018年上半年

B.201812個月中我國原油月最高進(jìn)口量比月最低進(jìn)口量高1152萬噸

C.2018年我國原油進(jìn)口總量高于2017年我國原油進(jìn)口總量

D.20181—5月各月與2017年同期相比較,我國原油進(jìn)口量有增有減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點(diǎn),經(jīng)過點(diǎn)的直線與拋物線交于不同的兩點(diǎn),直線與直線交于點(diǎn),經(jīng)過點(diǎn)且與直線垂直的直線軸于點(diǎn).

1)求拋物線的方程和焦點(diǎn)的坐標(biāo);

2)判斷直線與直線的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x-1+ (a∈R,e為自然對數(shù)的底數(shù)).且曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸.

(1)求a的值;

(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型商場的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷量(百臺)

0.6

0.8

1.2

1.6

1.8

(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測6月份該商場空調(diào)的銷售量;

(2)若該商場的營銷部對空調(diào)進(jìn)行新一輪促銷,對7月到12月有購買空調(diào)意愿的顧客進(jìn)行問卷調(diào)查.假設(shè)該地擬購買空調(diào)的消費(fèi)群體十分龐大,經(jīng)過營銷部調(diào)研機(jī)構(gòu)對其中的500名顧客進(jìn)行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:

有購買意愿對應(yīng)的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機(jī)抽取6名,再從這6人中隨機(jī)抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.

參考公式與數(shù)據(jù):線性回歸方程,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由我國引領(lǐng)的5G時代已經(jīng)到來,5G的發(fā)展將直接帶動包括運(yùn)營、制造、服務(wù)在內(nèi)的通信行業(yè)整體的快速發(fā)展,進(jìn)而對增長產(chǎn)生直接貢獻(xiàn),并通過產(chǎn)業(yè)間的關(guān)聯(lián)效應(yīng)和波及效應(yīng),間接帶動國民經(jīng)濟(jì)各行業(yè)的發(fā)展,創(chuàng)造岀更多的經(jīng)濟(jì)增加值.如圖是某單位結(jié)合近年數(shù)據(jù),對今后幾年的5G經(jīng)濟(jì)產(chǎn)出所做的預(yù)測.結(jié)合下圖,下列說法正確的是(

A.5G的發(fā)展帶動今后幾年的總經(jīng)濟(jì)產(chǎn)出逐年增加

B.設(shè)備制造商的經(jīng)濟(jì)產(chǎn)出前期增長較快,后期放緩

C.設(shè)備制造商在各年的總經(jīng)濟(jì)產(chǎn)出中一直處于領(lǐng)先地位

D.信息服務(wù)商與運(yùn)營商的經(jīng)濟(jì)產(chǎn)出的差距有逐步拉大的趨勢

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的前n項和為Sn,且=9,S6=60

(I)求數(shù)列{an}的通項公式;

II)若數(shù)列{bn}滿足bn+1bn=n∈N+)且b1=3,求數(shù)列的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線y22px(p>0)上一點(diǎn)P到準(zhǔn)線的距離與到原點(diǎn)O的距離相等,拋物線的焦點(diǎn)為F.

(1)求拋物線的方程;

(2)A為拋物線上一點(diǎn)(異于原點(diǎn)O),點(diǎn)A處的切線交x軸于點(diǎn)B,過A作準(zhǔn)線的垂線,垂足為點(diǎn)E,試判斷四邊形AEBF的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案