【題目】在平面直角坐標(biāo)系xOy中,已知拋物線y22px(p>0)上一點(diǎn)P到準(zhǔn)線的距離與到原點(diǎn)O的距離相等,拋物線的焦點(diǎn)為F.

(1)求拋物線的方程;

(2)A為拋物線上一點(diǎn)(異于原點(diǎn)O),點(diǎn)A處的切線交x軸于點(diǎn)B,過A作準(zhǔn)線的垂線,垂足為點(diǎn)E,試判斷四邊形AEBF的形狀,并證明你的結(jié)論.

【答案】(1)y26x (2) 菱形,證明見解析

【解析】

(1)由點(diǎn)P到準(zhǔn)線的距離與到原點(diǎn)O的距離相等,可得點(diǎn)P在線段OF的中垂線上,進(jìn)而可求p的值,即得拋物線的方程;(2)設(shè)點(diǎn)Ax軸的上方,設(shè)其坐標(biāo),由導(dǎo)函數(shù)的幾何意義寫出點(diǎn)A處的切線方程,可得到點(diǎn)B的坐標(biāo),進(jìn)而可寫出的坐標(biāo),進(jìn)而得兩向量相等,再結(jié)合拋物線定義可得AFAE,可得四邊形AEBF的形狀。

(1)由題意得點(diǎn)P到準(zhǔn)線的距離等于PO

由拋物線的定義得點(diǎn)P到準(zhǔn)線的距離為PF,

所以POPF,即點(diǎn)P在線段OF的中垂線上,

所以,p3,

所以拋物線的方程為y26x.

(2)四邊形AEBF為菱形,理由如下:

由拋物線的對稱性,設(shè)點(diǎn)x軸的上方,所以點(diǎn)A處切線的斜率為,

所以點(diǎn)A處切線的方程為yy0,

令上式中y0,得x=-,

所以B點(diǎn)坐標(biāo)為

,

所以

所以,所以FABE

又因?yàn)?/span>AEFB,故四邊形AEBF為平行四邊形,

再由拋物線的定義,得AFAE,所以四邊形AEBF為菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,ABAD,BCBD,平面ABD⊥平面BCD,點(diǎn)EF(EA,D不重合)分別在棱ADBD上,且EFAD.

求證:(1)EF∥平面ABC;

(2)ADAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C的對邊,若△ABC的周長為2(+1),且sin B+sin C=sin A,則a= (  )

A. B. 2 C. 4 D.

【答案】B

【解析】

根據(jù)正弦定理把轉(zhuǎn)化為邊的關(guān)系,進(jìn)而根據(jù)ABC的周長,聯(lián)立方程組,可求出a的值.

根據(jù)正弦定理,可化為

∵△ABC的周長為,

聯(lián)立方程組

解得a=2.

故選:B

【點(diǎn)睛】

(1)在三角形中根據(jù)已知條件求未知的邊或角時,要靈活選擇正弦、余弦定理進(jìn)行邊角之間的轉(zhuǎn)化,以達(dá)到求解的目的.

(2)求角的大小時,在得到角的某一個三角函數(shù)值后,還要根據(jù)角的范圍才能確定角的大小,這點(diǎn)容易被忽視,解題時要注意.

型】單選題
結(jié)束】
7

【題目】已知數(shù)列{an}中,an=n2-kn(n∈N*),且{an}單調(diào)遞增,則k的取值范圍是(  )

A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)說,年過半百的笛卡爾擔(dān)任瑞典一小公國的公主克里斯蒂娜的數(shù)學(xué)老師,日久生情,彼此愛慕,其父國王知情后大怒,將笛卡爾流放回法國,并軟禁公主,笛卡爾回法國后染上黑死病,連連給公主寫信,死前最后一封信只有一個公式:國王不懂,將這封信交給了公主,公主用笛卡爾教她的坐標(biāo)知識,畫出了這個圖形心形線”.明白了笛卡爾的心意,登上了國王寶座后,派人去尋笛卡爾,其逝久矣(僅是一個傳說).心形線是由一個圓上的一個定點(diǎn),當(dāng)該圓繞著與其相切且半徑相同的另外一個圓周上滾動時,這個定點(diǎn)的軌跡,因其形狀像心形而得名.在極坐標(biāo)系中,方程表示的曲線就是一條心形線,如圖,以極軸所在直線為軸,極點(diǎn)為坐標(biāo)原點(diǎn)的直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)).

1)求曲線的極坐標(biāo)方程;

2)若曲線相交于、、三點(diǎn),求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修:不等式選講

已知函數(shù)f(x)=|2x+3|+|2x﹣1|.

(Ⅰ)求不等式f(x)<8的解集;

(Ⅱ)若關(guān)于x的不等式f(x)≤|3m+1|有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公園準(zhǔn)備在一圓形水池里設(shè)置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,兩點(diǎn)為噴泉,圓心的中點(diǎn),其中米,半徑米,市民可位于水池邊緣任意一點(diǎn)處觀賞.

(1)若當(dāng)時,,求此時的值;

(2)設(shè),且

(i)試將表示為的函數(shù),并求出的取值范圍;

(ii)若同時要求市民在水池邊緣任意一點(diǎn)處觀賞噴泉時,觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對稱軸為軸,焦點(diǎn)為,拋物線上一點(diǎn)的橫坐標(biāo)為2,且.

1)求拋物線的方程;

2)過點(diǎn)作直線交拋物線于,兩點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

直角坐標(biāo)系中曲線的參數(shù)方程為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中, 點(diǎn)的極坐標(biāo),在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn),傾斜角為

(1)寫出曲線的直角坐標(biāo)方程和直線的參數(shù)方程;

(2)設(shè)直線與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求處的切線方程;

2)對于任意,恒成立,求的取值范圍;

3)試討論函數(shù)的極值點(diǎn)的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案