【題目】函數(shù),且恒成立.

1)求實數(shù)的集合

2)當時,判斷圖象與圖象的交點個數(shù),并證明.

(參考數(shù)據(jù):

【答案】1;(22個,證明見解析

【解析】

1)要恒成立,只要的最小值大于或等于零即可,所以只要討論求解看是否有最小值;

2)將圖像與圖像的交點個數(shù)轉(zhuǎn)化為方程實數(shù)解的個數(shù)問題,然后構(gòu)造函數(shù),再利用導數(shù)討論此函數(shù)零點的個數(shù).

1的定義域為,因為,

時,上單調(diào)遞減,時,使得,與條件矛盾;

時,由,得;由,得,所以上單調(diào)遞減,在上單調(diào)遞增,即有,由恒成立,所以恒成立,令,

;

;而時,,要使恒成立,

.

2)原問題轉(zhuǎn)化為方程實根個數(shù)問題,

時,圖象與圖象有且僅有2個交點,理由如下:

,即,令,

因為,所以的一根;

時,,

所以上單調(diào)遞減,,即上無實根;

時,,

上單調(diào)遞遞增,又,

所以上有唯一實根,且滿足,

①當時,上單調(diào)遞減,此時上無實根;

②當時,上單調(diào)遞增,

,故上有唯一實根.

時,由(1)知,上單調(diào)遞增,

所以,

,所以上無實根.

綜合,,,故有兩個實根,即圖象與圖象有且僅有2個交點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖①,在直角梯形ABCD中,ABCD,ABAD,且ABADCD1.現(xiàn)以AD為一邊向梯形外作正方形ADEF,然后沿邊AD將正方形ADEF翻折,使平面ADEF與平面ABCD垂直,MED的中點,如圖②.

(1)求證:AM∥平面BEC;

(2)求點D到平面BEC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),直線與曲線交于兩點.

(1)的長;

(2)在以為極點,軸的正半軸為極軸建立的極坐標系中,設點的極坐標為,求點到線段中點的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,)的圖象如圖所示,令,則下列關于函數(shù)的說法中正確的是(

A. 函數(shù)圖象的對稱軸方程為

B. 函數(shù)的最大值為2

C. 函數(shù)的圖象上存在點,使得在點處的切線與直線平行

D. 若函數(shù)的兩個不同零點分別為,則最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是國家統(tǒng)計局于202019日發(fā)布的201812月到201912月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:20192月與20182月相比較稱同比,20192月與20191月相比較稱環(huán)比)根據(jù)該折線圖,下列結(jié)論錯誤的是(

A.201912月份,全國居民消費價格環(huán)比持平

B.201812月至201912月全國居民消費價格環(huán)比均上漲

C.201812月至201912月全國居民消費價格同比均上漲

D.201811月的全國居民消費價格高于201712月的全國居民消費價格

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的圖象經(jīng)過點.

(1)求拋物線的方程和焦點坐標;

(2)直線交拋物線,不同兩點,且位于軸兩側(cè),過點,分別作拋物線的兩條切線交于點,直線,軸的交點分別記作,.記的面積為,面積為,面積為,試問是否為定值,若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為,t為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求直角坐標系下直線與曲線的普通方程;

2)設直線與曲線交于點、(二者可重合),交軸于,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新型冠狀病毒肺炎疫情爆發(fā)以來,疫情防控牽掛著所有人的心. 某市積極響應上級部門的號召,通過沿街電子屏、微信公眾號等各種渠道對此戰(zhàn)“疫”進行了持續(xù)、深入的懸窗,幫助全體市民深入了解新冠狀病毒,增強戰(zhàn)勝疫情的信心. 為了檢驗大家對新冠狀病毒及防控知識的了解程度,該市推出了相關的知識問卷,隨機抽取了年齡在15~75歲之間的200人進行調(diào)查,并按年齡繪制頻率分布直方圖如圖所示,把年齡落在區(qū)間內(nèi)的人分別稱為“青少年人”和“中老年人”. 經(jīng)統(tǒng)計“青少年人”和“中老年人”的人數(shù)比為19:21. 其中“青少年人”中有40人對防控的相關知識了解全面,“中老年人”中對防控的相關知識了解全面和不夠全面的人數(shù)之比是2:1.

1)求圖中的值;

2)現(xiàn)采取分層抽樣在中隨機抽取8名市民,從8人中任選2人,求2人中至少有1人是“中老年人”的概率是多少?

3)根據(jù)已知條件,完成下面的2×2列聯(lián)表,并根據(jù)統(tǒng)計結(jié)果判斷:能夠有99.9%的把握認為“中老年人”比“青少年人”更加了解防控的相關知識?

了解全面

了解不全面

合計

青少年人

中老年人

合計

附表及公式:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)超過總?cè)藬?shù)的

C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)90后比80后多

查看答案和解析>>

同步練習冊答案