設(shè)數(shù)列的前n項(xiàng)和為,已知, ,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,數(shù)列的前n項(xiàng)和為,,證明:.
(1);(2)證明過(guò)程詳見解析.
解析試題分析:本題主要考查等比數(shù)列的通項(xiàng)公式、配湊法求通項(xiàng)公式、錯(cuò)位相減法求和等基礎(chǔ)知識(shí),考查學(xué)生分析問(wèn)題解決問(wèn)題的能力,考查轉(zhuǎn)化能力和計(jì)算能力.第一問(wèn),已知條件中只有一個(gè)等式,利用,用代替式子中的,得到一個(gè)新的表達(dá)式,兩個(gè)式子相減得到,再用配湊法,湊出等比數(shù)列,求出數(shù)列的通項(xiàng)公式;第二問(wèn),利用第一問(wèn)的結(jié)論,先化簡(jiǎn)表達(dá)式,再利用錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,最后的結(jié)果與2比較大小.
試題解析:(Ⅰ)∵,當(dāng)時(shí)
∴ 2分
∴ 即 ()
又 ∴ ∴
∴ 即 6分
(Ⅱ)∵ ∴ 8分
∴,
∴ 12分
考點(diǎn):1 由求;2 配湊法求通項(xiàng)公式;3 等比數(shù)列的通項(xiàng)公式;4 錯(cuò)位相減法
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}的各項(xiàng)均為正數(shù)的等比數(shù)列,且a1a2=2,a3a4=32,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn=n2,(n∈N*),求數(shù)列{anbn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和Sn與通項(xiàng)an滿足Sn=-an.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=++…+,求T2012;
(3)若cn=an·f(an),求{cn}的前n項(xiàng)和Un.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
等比數(shù)列{cn}滿足cn+1+cn=10·4n-1(n∈N*),數(shù)列{an}的前n項(xiàng)和為Sn,且an=log2cn.
(1)求an,Sn;
(2)數(shù)列{bn}滿足bn=,Tn為數(shù)列{bn}的前n項(xiàng)和,是否存在正整數(shù)m(m>1),使得T1,Tm,T6m成等比數(shù)列?若存在,求出所有m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}成等比數(shù)列,且an>0.
(1)若a2-a1=8,a3=m.①當(dāng)m=48時(shí),求數(shù)列{an}的通項(xiàng)公式;②若數(shù)列{an}是唯一的,求m的值;
(2)若a2k+a2k-1+…+ak+1-(ak+ak-1+…+a1)=8,k∈N*,求a2k+1+a2k+2+…+a3k的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,a4=a1-9,a5,a3,a4成等差數(shù)列.
(1)求數(shù)列{an} 的通項(xiàng)公式;
(2)證明:對(duì)任意k∈N*,Sk+2,Sk,Sk+1成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和是Sn,且Sn+an=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=log3,數(shù)列的前n項(xiàng)和為Tn,證明:Tn<.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前n項(xiàng)和為,
(1)求證:數(shù)列為等差數(shù)列;
(2)設(shè)數(shù)列的前n項(xiàng)和為Tn,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列中,
(Ⅰ)求證:是等比數(shù)列,并求的通項(xiàng)公式;
(Ⅱ)數(shù)列滿足,數(shù)列的前n項(xiàng)和為,若不等式對(duì)一切恒成立,求的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com