(本小題滿分14分)某養(yǎng)殖廠規(guī)定:飼料用完的第二天方可購(gòu)買(mǎi)飼料,并且每批飼料可供n天使用.已知該廠每天需要飼料200公斤,每公斤飼料的價(jià)格為1.8元,飼料的保管費(fèi)為平均每公斤每天0.03元(當(dāng)天用掉的飼料不計(jì)保管費(fèi)用),購(gòu)買(mǎi)飼料每次支付運(yùn)費(fèi)300元.
(1)求該廠多少天購(gòu)買(mǎi)一次飼料才能使平均每天支付的總費(fèi)用最小;
(2)若提供飼料的公司規(guī)定,當(dāng)一次購(gòu)買(mǎi)飼料不少5噸時(shí)其價(jià)格可享受八五折優(yōu)惠(即原價(jià)的85%).問(wèn)該廠是否考慮利用此優(yōu)惠條件,請(qǐng)說(shuō)明理由.
(1)設(shè)該廠應(yīng)隔天購(gòu)買(mǎi)一次飼料,平均每天支付的總費(fèi)用為元…1分
∵飼料的保管費(fèi)用每天比前一天少200×0.03=6(元),
∴天飼料的保管費(fèi)用共是
…………………………4分
從而有 ………………………5分
………………………7分
當(dāng)且僅當(dāng),即時(shí),有最小值417 ………………………8分
即每隔10天購(gòu)買(mǎi)一次飼料才能使平均每天支付的總費(fèi)用最小.
(2)若廠家利用此優(yōu)惠條件,則至少25天購(gòu)買(mǎi)一次飼料,設(shè)該廠利用此優(yōu)惠條件,每隔天()購(gòu)買(mǎi)一次飼料,平均每天支付的總費(fèi)用為元,則
…………………………10分
∵
∴當(dāng)時(shí),,即函數(shù)在上是增函數(shù)…………………12分
∴當(dāng)時(shí),取得最小值390
∵390<417,故該廠應(yīng)該利用此優(yōu)惠條件 …………………………………… 14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷(xiāo)售價(jià)格及銷(xiāo)售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷(xiāo)售價(jià)格(單位:元)為,第天的銷(xiāo)售量為,已知該商品成本為每件25元.
(Ⅰ)寫(xiě)出銷(xiāo)售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤(rùn);
(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com