【題目】某貧困地區(qū)有1500戶居民,其中平原地區(qū)1050戶,山區(qū)450戶.為調(diào)查該地區(qū)2017年家庭收入情況,從而更好地實(shí)施“精準(zhǔn)扶貧”,采用分層抽樣的方法,收集了150戶家庭2017年年收入的樣本數(shù)據(jù)(單位:萬(wàn)元).

(Ⅰ)應(yīng)收集多少戶山區(qū)家庭的樣本數(shù)據(jù)?

(Ⅱ)根據(jù)這150個(gè)樣本數(shù)據(jù),得到2017年家庭收入的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為,,,,,,.如果將頻率視為概率,估計(jì)該地區(qū)2017年家庭收入超過(guò)1.5萬(wàn)元的概率;

(Ⅲ)樣本數(shù)據(jù)中,由5戶山區(qū)家庭的年收入超過(guò)2萬(wàn)元,請(qǐng)完成2017年家庭收入與地區(qū)的列聯(lián)表,并判斷是否有的把握認(rèn)為“該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”?

附:

【答案】(Ⅰ)45;(Ⅱ);(Ⅲ)的把握認(rèn)為“該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”.

【解析】分析:(Ⅰ)利用分層抽樣中每層所抽取的比例數(shù)相等求得答案;(Ⅱ)根據(jù)頻率分布直方圖可得該地區(qū)2017年家庭收入超過(guò)1.5萬(wàn)元的概率;(Ⅲ)由題意列出2×2列聯(lián)表,計(jì)算出的值,結(jié)合附表得答案.

詳解:(Ⅰ)由已知可得每戶居民被抽取的概率為0.1,故應(yīng)手機(jī)戶山區(qū)家庭的樣本數(shù)據(jù).

(Ⅱ)由直方圖可知該地區(qū)2017年家庭年收入超過(guò)1.5萬(wàn)元的概率約為

(Ⅲ)樣本數(shù)據(jù)中,年收入超過(guò)2萬(wàn)元的戶數(shù)為戶.

而樣本數(shù)據(jù)中,有5戶山區(qū)家庭的年收入超過(guò)2萬(wàn)元,故列聯(lián)表如下:

所以,

∴有的把握認(rèn)為該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)求在區(qū)間上的極小值和極大值;

(2)求為自然對(duì)數(shù)的底數(shù))上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形和等邊三角形中, ,平面平面

(1)在上找一點(diǎn),使,并說(shuō)明理由;

(2)在(1)的條件下,求平面與平面所成銳二面角余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)在R上是增函數(shù),則下列說(shuō)法正確的是(  )

A.y=-f(x)在R上是減函數(shù)

B.y=在R上是減函數(shù)

C.y=[f(x)]2在R上是增函數(shù)

D.y=af(x)(a為實(shí)數(shù))在R上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】工廠車間某部門有8個(gè)小組,在一次技能考試中成績(jī)情況分析如下:

小組

1

2

3

4

5

6

7

8

大于90分人數(shù)

6

6

7

3

5

3

3

7

不大于90分人數(shù)

39

39

38

42

40

42

42

38

1)求90分以上人數(shù)對(duì)小組序號(hào)的線性回歸方程;

附:回歸方程為,其中.本題,.

2)能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為7組與8組的成績(jī)是否優(yōu)秀(大于90分)與小組有關(guān)系.附部分臨界值表:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)fx),若存在x0R,使fx0=x0,則稱x0fx)的一個(gè)不動(dòng)點(diǎn),已知fx=x2+ax+4[1,3]恒有兩個(gè)不同的不動(dòng)點(diǎn),則實(shí)數(shù)a的取值范圍______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了人進(jìn)行分析,得到如下列聯(lián)表(單位:人).

經(jīng)常使用

偶爾使用或不使用

合計(jì)

歲及以下

歲以上

合計(jì)

1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為市使用共享單車的情況與年齡有關(guān);

2)(i)現(xiàn)從所選取的歲以上的網(wǎng)友中,采用分層抽樣的方法選取人,再?gòu)倪@人中隨機(jī)選出人贈(zèng)送優(yōu)惠券,求選出的人中至少有人經(jīng)常使用共享單車的概率;

ii)將頻率視為概率,從市所有參與調(diào)查的網(wǎng)友中隨機(jī)選取人贈(zèng)送禮品,記其中經(jīng)常使用共享單車的人數(shù)為,求的數(shù)學(xué)期望和方差.

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍;

(2)證明:當(dāng)時(shí),關(guān)于的不等式上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)任意,,給出下列命題:

①“”是“”的充要條件;

②“是無(wú)理數(shù)”是“是無(wú)理數(shù)”的充要條件;

③“”是“”的必要條件,

④“”是“”的充分條件.

其中真命題的個(gè)數(shù)為().

A.1個(gè)

B.2個(gè)

C.3個(gè)

D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案