已知tanθ+
1
tanθ
=2,則sinθ+cosθ等于( 。
A、2
B、
2
C、-
2
D、±
2
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用,三角函數(shù)的化簡(jiǎn)求值
專(zhuān)題:計(jì)算題,三角函數(shù)的求值
分析:先求出tanθ,再求出sinθ=cosθ=±
2
2
,即可得出結(jié)論.
解答: 解:∵tanθ+
1
tanθ
=2,
∴tanθ=1,
∴sinθ=cosθ=±
2
2
,
∴sinθ+cosθ=±
2

故選:D.
點(diǎn)評(píng):本題考查同角三角函數(shù)基本關(guān)系的運(yùn)用,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1
3
x3-4x+4的極大值與極小值之和為( 。
A、8
B、
26
3
C、10
D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:3x-
3
y+1=0與直線l2
3
x-3y+2=0,則l1與l2的夾角為( 。
A、150°B、120°
C、60°D、30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z滿足z(1-i)=(1+i)2,其中i為虛數(shù)單位,則復(fù)數(shù)z的共軛復(fù)數(shù)為( 。
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果a<b<0,那么下面一定成立的是(  )
A、
1
a
1
b
B、ac<bc
C、a-b>0
D、a2<b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三角形ABC中,已知sinA:sinB:sinC=2:3:4,且a+b=10,則向量
AB
在向量
AC
的投影是(  )
A、7B、6C、5D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+ax-lnx
(1)若a=1,求f(x)的單調(diào)區(qū)間與極值;
(2)若函數(shù)f(x)在[1,2]內(nèi)是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的導(dǎo)數(shù):
(1)y=3xsin(2x+5);
(2)y=
x3-1
cosx
+2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,有一塊拋物線形狀的鋼板,計(jì)劃將此鋼板切割成等腰梯形ABCD的形狀,使得A,B,C,D都落在拋物線上,點(diǎn)A,B關(guān)于拋物線的軸對(duì)稱(chēng),且AB=2,拋物線的頂點(diǎn)到底邊的距離是2,記CD=2t,梯形面積為S.
(1)以拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),其對(duì)稱(chēng)軸為y軸建立坐標(biāo)系,使拋物線開(kāi)口向下,求出該拋物線的方程;
(2)求面積S關(guān)于t的函數(shù)解析式,并寫(xiě)出其定義域;
(3)求面積S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案