【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現對30名六年級學生進行了問卷調查得到如下列聯表:平均每天喝500ml以上為常喝,體重超過50kg為肥胖。
常喝 | 不常喝 | 合計 | |
肥胖 | 6 | 2 | 8 |
不肥胖 | 4 | 18 | 22 |
合計 | 10 | 20 | 30 |
已知在全部30人中隨機抽取1人,抽到肥胖的學生的概率為。
(1)是否有的把握認為肥胖與常喝碳酸飲料有關?說明你的理由
(2)現從常喝碳酸飲料且肥胖的學生中(2名女生),抽取2人參加電視節(jié)目,則正好抽到一男一女的概率是多少?
參考數據:
(參考公式:,其中)
【答案】(1)見解析;(2)
【解析】
(1)由已知數據可求得K2≈8.522>7.879,從而有99.5%的把握認為肥胖與常喝碳酸飲料有關;
(2)設常喝碳酸飲料的肥胖者男生為A、B、C、D,女生為E,F,任取兩人,利用列舉法能求出抽到一男一女的概率.
(1)由已知數據可求得:.
因此有99.5%的把握認為肥胖與常喝碳酸飲料有關.
(2)設常喝碳酸飲料的肥胖者男生為A、B、C、D,女生為E,F,
則任取兩人有,AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15種.
其中一男一女有AE,AF,BE,BF,CE,DE,CF,DF,共8種.
故抽到一男一女的概率為.
科目:高中數學 來源: 題型:
【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名高三學生的課外體育鍛煉平均每天運動的時間進行調查,如下表:(平均每天鍛煉的時間單位:分鐘)
將學生日均課外體育運動時間在上的學生評價為“課外體育達標”.
平均每天鍛煉的時間(分鐘) | ||||||
總人數 | 20 | 36 | 44 | 50 | 40 | 10 |
(1)請根據上述表格中的統(tǒng)計數據填寫下面列聯表,并通過計算判斷是否能在犯錯誤的概率不超過的前提下認為“課外體育達標”與性別有關?
課外體育不達標 | 課外體育達標 | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
(2)從上述200名學生中,按“課外體育達標”、“課外體育不達標”分層抽樣,抽取4人得到一個樣本,再從這個樣本中抽取2人,求恰好抽到一名“課外體育不達標”學生的概率.
參考公式:,其中.
參考數據:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex(e=2.71828…),g(x)為其反函數.
(1)求函數F(x)=g(x)﹣ax的單調區(qū)間;
(2)設直線l與f(x),g(x)均相切,切點分別為(x1 , f(x1)),(x2 , f(x2)),且x1>x2>0,求證:x1>1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某政府機關在編人員100人,其中副處級以上干部10人,一般干部70人,工人20人.上級機關為了了解職工對政府機構改革的意見,要從中抽取一個容量為20的樣本,試確定用何種方法抽取,請具體實施操作.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】極坐標系中橢圓C的方程為ρ2= ,以極點為原點,極軸為x軸非負半軸,建立平面直角坐標系,且兩坐標系取相同的單位長度.
(1)求該橢圓的直角標方程,若橢圓上任一點坐標為P(x,y),求x+ y的取值范圍;
(2)若橢圓的兩條弦AB,CD交于點Q,且直線AB與CD的傾斜角互補,求證:|QA||QB|=|QC||QD|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,江的兩岸可近似的看成兩平行的直線,江岸的一側有A,B兩個蔬菜基地,江的另一側點C處有一個超市.已知A、B、C中任意兩點間的距離為20千米.超市欲在AB之間建一個運輸中轉站D,A,B兩處的蔬菜運抵D處后,再統(tǒng)一經過貨輪運抵C處.由于A,B兩處蔬菜的差異,這兩處的運輸費用也不同.如果從A處出發(fā)的運輸費為每千米2元,從B處出發(fā)的運輸費為每千米1元,貨輪的運輸費為每千米3元.
(1)設∠ADC=α,試將運輸總費用S(單位:元)表示為α的函數S(α),并寫出自變量的取值范圍;
(2)問中轉站D建在何處時,運輸總費用S最?并求出最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題錯誤的是 ( )
A. 如果平面平面,那么平面內一定存在直線平行于平面
B. 如果平面不垂直平面,那么平面內一定不存在直線垂直于平面
C. 如果平面平面,平面平面,且,那么
D. 如果平面平面,那么平面內所有直線都垂直于平面
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com