精英家教網 > 高中數學 > 題目詳情

【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現對30名六年級學生進行了問卷調查得到如下列聯表:平均每天喝500ml以上為常喝,體重超過50kg為肥胖。

常喝

不常喝

合計

肥胖

6

2

8

不肥胖

4

18

22

合計

10

20

30

已知在全部30人中隨機抽取1人,抽到肥胖的學生的概率為。

(1)是否有的把握認為肥胖與常喝碳酸飲料有關?說明你的理由

(2)現從常喝碳酸飲料且肥胖的學生中(2名女生),抽取2人參加電視節(jié)目,則正好抽到一男一女的概率是多少?

參考數據:

(參考公式:,其中

【答案】(1)見解析;(2)

【解析】

(1)由已知數據可求得K2≈8.522>7.879,從而有99.5%的把握認為肥胖與常喝碳酸飲料有關;

(2)設常喝碳酸飲料的肥胖者男生為A、B、C、D,女生為E,F,任取兩人,利用列舉法能求出抽到一男一女的概率.

(1)由已知數據可求得:

因此有99.5%的把握認為肥胖與常喝碳酸飲料有關.

(2)設常喝碳酸飲料的肥胖者男生為A、B、C、D,女生為E,F,

則任取兩人有,AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15種.

其中一男一女有AE,AF,BE,BF,CE,DE,CF,DF,共8種.

故抽到一男一女的概率為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名高三學生的課外體育鍛煉平均每天運動的時間進行調查,如下表:(平均每天鍛煉的時間單位:分鐘)

將學生日均課外體育運動時間在上的學生評價為課外體育達標”.

平均每天鍛煉的時間(分鐘)

總人數

20

36

44

50

40

10

(1)請根據上述表格中的統(tǒng)計數據填寫下面列聯表,并通過計算判斷是否能在犯錯誤的概率不超過的前提下認為課外體育達標與性別有關?

課外體育不達標

課外體育達標

合計

20

110

合計

(2)從上述200名學生中,按課外體育達標”、“課外體育不達標分層抽樣,抽取4人得到一個樣本,再從這個樣本中抽取2人,求恰好抽到一名課外體育不達標學生的概率.

參考公式:,其中.

參考數據:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ex(e=2.71828…),g(x)為其反函數.
(1)求函數F(x)=g(x)﹣ax的單調區(qū)間;
(2)設直線l與f(x),g(x)均相切,切點分別為(x1 , f(x1)),(x2 , f(x2)),且x1>x2>0,求證:x1>1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某政府機關在編人員100人,其中副處級以上干部10人,一般干部70人,工人20人.上級機關為了了解職工對政府機構改革的意見,要從中抽取一個容量為20的樣本,試確定用何種方法抽取,請具體實施操作.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】極坐標系中橢圓C的方程為ρ2= ,以極點為原點,極軸為x軸非負半軸,建立平面直角坐標系,且兩坐標系取相同的單位長度.
(1)求該橢圓的直角標方程,若橢圓上任一點坐標為P(x,y),求x+ y的取值范圍;
(2)若橢圓的兩條弦AB,CD交于點Q,且直線AB與CD的傾斜角互補,求證:|QA||QB|=|QC||QD|.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為等比數列的前項和,,若數列也是等比數列,則等于( )

A. 2n B. 3n C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數
(Ⅰ)求f(x)的單調遞減區(qū)間;
(Ⅱ)設α是銳角,且 ,求f(α)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,江的兩岸可近似的看成兩平行的直線,江岸的一側有A,B兩個蔬菜基地,江的另一側點C處有一個超市.已知A、B、C中任意兩點間的距離為20千米.超市欲在AB之間建一個運輸中轉站D,A,B兩處的蔬菜運抵D處后,再統(tǒng)一經過貨輪運抵C處.由于A,B兩處蔬菜的差異,這兩處的運輸費用也不同.如果從A處出發(fā)的運輸費為每千米2元,從B處出發(fā)的運輸費為每千米1元,貨輪的運輸費為每千米3元.

(1)設∠ADC=α,試將運輸總費用S(單位:元)表示為α的函數S(α),并寫出自變量的取值范圍;
(2)問中轉站D建在何處時,運輸總費用S最?并求出最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題錯誤的是 ( )

A. 如果平面平面,那么平面內一定存在直線平行于平面

B. 如果平面不垂直平面,那么平面內一定不存在直線垂直于平面

C. 如果平面平面,平面平面,且,那么

D. 如果平面平面,那么平面內所有直線都垂直于平面

查看答案和解析>>

同步練習冊答案