【題目】如圖,江的兩岸可近似的看成兩平行的直線,江岸的一側有A,B兩個蔬菜基地,江的另一側點C處有一個超市.已知A、B、C中任意兩點間的距離為20千米.超市欲在AB之間建一個運輸中轉站D,A,B兩處的蔬菜運抵D處后,再統(tǒng)一經過貨輪運抵C處.由于A,B兩處蔬菜的差異,這兩處的運輸費用也不同.如果從A處出發(fā)的運輸費為每千米2元,從B處出發(fā)的運輸費為每千米1元,貨輪的運輸費為每千米3元.
(1)設∠ADC=α,試將運輸總費用S(單位:元)表示為α的函數S(α),并寫出自變量的取值范圍;
(2)問中轉站D建在何處時,運輸總費用S最。坎⑶蟪鲎钚≈担
【答案】
(1)解:由題在△ACD中,∵∠CAD=∠ABC=∠ACB= ,∠CDA=α,∴∠ACD= ﹣α.
又AB=BC=CA=20,△ACD中,
由正弦定理知 = = ,得CD= ,AD= ,
∴S=2AD+BD+3CD=AD+3CD+20= + +20
=10 +20 ( <α< )
(2)解:S′=10 ,令S′=0,得cosα=﹣
當cosα<﹣ 時,S′<0;當cosα>﹣ 時,S′>0,∴當cosα=﹣ 時S取得最小值.
此時,sinα= ,AD=10﹣ ,
∴中轉站距A處10﹣ 千米時,運輸成本S最小
【解析】(1)由題在△ACD中,由正弦定理求得CD、AD的值,即可求得運輸成本S的解析式.(2)利用導數求得cosα=﹣ 時,函數S取得極小值,由此可得中轉點D到A的距離以及S的最小值.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的定義域為[﹣1,5],部分對應值如表,f(x)的導函數y=f′(x)的圖象如圖所示,
x | ﹣1 | 0 | 2 | 4 | 5 |
f(x) | 1 | 2 | 1.5 | 2 | 1 |
下列關于函數f(x)的命題:
①函數f(x)的值域為[1,2];
②如果當x∈[﹣1,t]時,f(x)的最大值為2,那么t的最大值為4;
③函數f(x)在[0,2]上是減函數;
④當1<a<2時,函數y=f(x)﹣a最多有4個零點.
其中正確命題的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現對30名六年級學生進行了問卷調查得到如下列聯表:平均每天喝500ml以上為常喝,體重超過50kg為肥胖。
常喝 | 不常喝 | 合計 | |
肥胖 | 6 | 2 | 8 |
不肥胖 | 4 | 18 | 22 |
合計 | 10 | 20 | 30 |
已知在全部30人中隨機抽取1人,抽到肥胖的學生的概率為。
(1)是否有的把握認為肥胖與常喝碳酸飲料有關?說明你的理由
(2)現從常喝碳酸飲料且肥胖的學生中(2名女生),抽取2人參加電視節(jié)目,則正好抽到一男一女的概率是多少?
參考數據:
(參考公式:,其中)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面有五個命題:① 函數的最小正周期是;② 終邊在軸上的角的集合是;③ 在同一坐標系中,函數的圖象和函數的圖象有三個公共點;④ 把函數;;其中真命題的序號是( )
A. ①③ B. ①④ C. ②③ D. ③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=﹣x3+ax2+bx+c圖象上的點P(1,﹣2)處的切線方程為y=﹣3x+1.
(1)若函數f(x)在x=﹣2時有極值,求f(x)的表達式
(2)若函數f(x)在區(qū)間[﹣2,0]上單調遞增,求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地一天中6時至14時的溫度變化曲線近似滿足函數T=Asin(ωt+φ)+B(其中<φ<π)6時至14時期間的溫度變化曲線如圖所示,它是上述函數的半個周期的圖象,那么圖中曲線對應的函數解析式是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin+cos , x∈R.
(1)求函數f(x)的最小正周期,并求函數f(x)在x∈[﹣2π,2π]上的單調遞增區(qū)間;
(2)函數f(x)=sinx(x∈R)的圖象經過怎樣的平移和伸縮變換可以得到函數f(x)的圖象.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是函數y=f(x)的導函數y=f′(x)的圖象,給出下列命題:
①﹣3是函數y=f(x)的極值點;
②﹣1是函數y=f(x)的最小值點;
③y=f(x)在x=0處切線的斜率小于零;
④y=f(x)在區(qū)間(﹣3,1)上單調遞增.
則正確命題的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=lg(x+1)
(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范圍;
(2)若g(x)是以2為周期的偶函數,且當0≤x≤1時,g(x)=f(x),求函數y=g(x)(x∈[1,2])的反函數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com