【題目】如圖,已知五棱錐PABCDE,其中ABEPCD均為正三角形,四邊形BCDE為等腰梯形,BE=2BC=2CD=2DE=4,PBPE

Ⅰ)求證:平面PCD⊥平面ABCDE;

Ⅱ)若線段AP上存在一點(diǎn)M,使得三棱錐PBEM的體積為五棱錐PABCDE體積的,求AM的長.

【答案】Ⅰ)證明略;(ⅡAM

【解析】

(1)CD中點(diǎn)O,根據(jù)正三角形性質(zhì)得,再取BE中點(diǎn)N,根據(jù)勾股定理計(jì)算得,由線面垂直判定定理得平面,最后根據(jù)面面垂直判定定理得結(jié)論,(2)先作M到平面的垂線,再根據(jù)錐體體積公式計(jì)算AM的長.

(1)CD中點(diǎn)O,BE中點(diǎn)N,連PN,ON.

因?yàn)?/span>PCD為正三角形,所以,

因?yàn)?/span>PBPEBE=4,所以,

因?yàn)樗倪呅?/span>BCDE為等腰梯形,所以

因?yàn)?/span>,所以,

因?yàn)?/span>平面,所以平面,

因?yàn)?/span>平面,因此平面 平面,

(2)因?yàn)?/span>ABE為正三角形,四邊形BCDE為等腰梯形,所以三點(diǎn)共線,

M ,則,

因?yàn)?/span>平面,所以平面,

因?yàn)槿忮FPBEM的體積為五棱錐PABCDE體積的,

所以

從而

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果既約分?jǐn)?shù)滿足為正整數(shù)),則稱牛分?jǐn)?shù)”.現(xiàn)將所有的牛分?jǐn)?shù)按遞增順序排成一個(gè)數(shù)列,稱為牛數(shù)列”.證明對(duì)于牛數(shù)列中的任兩個(gè)相鄰項(xiàng),都滿足

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于集合,若存在兩個(gè)數(shù)列滿足(i) ;(ii) 則稱M為一個(gè)“友誼集”,稱(A,B)為的一種“友誼排列”,如A=(3,10,7,9,6)和B=(2,8,4,5,1)便是集合的一種友誼排列,記為

(1)證明:若為一個(gè)友誼集,則存在偶數(shù)種友誼排列;

(2)確定集合的全體友誼排列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線與直線交于,兩點(diǎn).

(1)若的面積為,求;

(2)軸上是否存在點(diǎn),使得當(dāng)變動(dòng)時(shí),總有?若存在,求以線段為直徑的圓的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知內(nèi)角的角平分線.

(1)用正弦定理證明: ;

2)若,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,共享單車在我國各城市迅猛發(fā)展,為人們的出行提供了便利,但也給城市的交通管理帶來了一些困難,為掌握共享單車在省的發(fā)展情況,某調(diào)查機(jī)構(gòu)從該省抽取了5個(gè)城市,并統(tǒng)計(jì)了共享單車的指標(biāo)指標(biāo),數(shù)據(jù)如下表所示:

城市1

城市2

城市3

城市4

城市5

指標(biāo)

2

4

5

6

8

指標(biāo)

3

4

4

4

5

1)試求間的相關(guān)系數(shù),并說明是否具有較強(qiáng)的線性相關(guān)關(guān)系(若,則認(rèn)為具有較強(qiáng)的線性相關(guān)關(guān)系,否則認(rèn)為沒有較強(qiáng)的線性相關(guān)關(guān)系).

2)建立關(guān)于的回歸方程,并預(yù)測當(dāng)指標(biāo)為7時(shí),指標(biāo)的估計(jì)值.

3)若某城市的共享單車指標(biāo)在區(qū)間的右側(cè),則認(rèn)為該城市共享單車數(shù)量過多,對(duì)城市的交通管理有較大的影響交通管理部門將進(jìn)行治理,直至指標(biāo)在區(qū)間內(nèi)現(xiàn)已知省某城市共享單車的指標(biāo)為13,則該城市的交通管理部門是否需要進(jìn)行治理?試說明理由.

參考公式:回歸直線中斜率和截距的最小二乘估計(jì)分別為

,,相關(guān)系數(shù)

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)在點(diǎn)處的切線.

(1)求證: ;

(2)設(shè),其中.若對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)若函數(shù)上是增函數(shù),求正數(shù)的取值范圍;

(2)當(dāng)時(shí),設(shè)函數(shù)的圖象與x軸的交點(diǎn)為,,曲線,兩點(diǎn)處的切線斜率分別為,,求證:+ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點(diǎn)為,準(zhǔn)線為,是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足.設(shè)線段的中點(diǎn)上的投影為,則的最大值是 ( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案