精英家教網 > 高中數學 > 題目詳情

【題目】已知定義域為的函數是奇函數.

(1) 求實數的值;

(2) 判斷并用定義證明該函數在定義域上的單調性;

(3) 若方程內有解,求實數的取值范圍.

【答案】(1)1;(2)見解析;(3)[-1,3).

【解析】

(1)根據解得,再利用奇偶性的定義驗證,即可求得實數的值;(2)先對分離常數判斷出為遞減函數,再利用單調性的定義作差證明即可;(3)先用函數的奇函數性質再用減函數性質變形,然后分離參數可得內有解,令,只要.

(1)依題意得,,故,此時,

對任意均有

所以是奇函數,所以.

(2)上是減函數,證明如下:任取,則

所以該函數在定義域上是減函數.

(3)由函數為奇函數知,

,

又函數是單調遞減函數,從而,

即方程內有解,

,只要,

, 且,∴

∴當時,原方程在內有解.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】定義區(qū)間的長度均為,多個互無交集的區(qū)間的并集長度為各區(qū)間長度之和,例如的長度。用表示不超過的最大整數,例如。記。設,,若用、分別表示不等式、方程和不等式解集區(qū)間的長度,則當時,____________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓E: + =1(a>b>0)的焦點到直線x﹣3y=0的距離為 ,離心率為 ,拋物線G:y2=2px(p>0)的焦點與橢圓E的焦點重合;斜率為k的直線l過G的焦點與E交于A,B,與G交于C,D.
(1)求橢圓E及拋物線G的方程;
(2)是否存在學常數λ,使 為常數,若存在,求λ的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高校進行社會實踐,對歲的人群隨機抽取 1000 人進行了一次是否開通“微博”的調查,開通“微博”的為“時尚族”,否則稱為“非時尚族”.通過調查得到到各年齡段人數的頻率分布直方圖如圖所示,其中在歲, 歲年齡段人數中,“時尚族”人數分別占本組人數的、.

(1)求歲與歲年齡段“時尚族”的人數;

(2)從歲和歲年齡段的“時尚族”中,采用分層抽樣法抽取6人參加網絡時尚達人大賽,其中兩人作為領隊.求領隊的兩人年齡都在歲內的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設O是坐標原點,橢圓C:x2+3y2=6的左右焦點分別為F1 , F2 , 且P,Q是橢圓C上不同的兩點,
(1)若直線PQ過橢圓C的右焦點F2 , 且傾斜角為30°,求證:|F1P|、|PQ|、|QF1|成等差數列;
(2)若P,Q兩點使得直線OP,PQ,QO的斜率均存在.且成等比數列.求直線PQ的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,橢圓的左、右焦點為,右頂點為,上頂點為,若, 軸垂直,且.

(1)求橢圓方程;

(2)過點且不垂直于坐標軸的直線與橢圓交于兩點,已知點,當時,求滿足的直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了研究鐘表與三角函數的關系,以9點與3點所在直線為x軸,以6點與12點為y軸,設秒針針尖指向位置P(x,y),若初始位置為P0 , ),秒針從P0(注此時t=0)開始沿順時針方向走動,則點P的縱坐標y與時間t(秒)的函數關系為(
A.y=sin( t+
B.y=sin( t﹣
C.y=sin(﹣ t+
D.y=sin(﹣ t﹣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正方形ABCD邊長為2,以D為圓心、DA為半徑的圓弧與以BC為直徑的半圓O交于點F,連結CF并延長交AB于點E.

(1)求證:AE=EB;
(2)求EFFC的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點及圓.

1)若直線過點且被圓截得的線段長為,的方程;

(2)求過點的圓的弦的中點的軌跡方程.

查看答案和解析>>

同步練習冊答案