【題目】橢圓E: + =1(a>b>0)的焦點到直線x﹣3y=0的距離為 ,離心率為 ,拋物線G:y2=2px(p>0)的焦點與橢圓E的焦點重合;斜率為k的直線l過G的焦點與E交于A,B,與G交于C,D.
(1)求橢圓E及拋物線G的方程;
(2)是否存在學(xué)常數(shù)λ,使 為常數(shù),若存在,求λ的值,若不存在,說明理由.

【答案】
(1)解:設(shè)E、G的公共焦點為F(c,0),由題意得

聯(lián)立解得

所以橢圓E: ,拋物線G:y2=8x.


(2)解:設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).

直線l的方程為y=k(x﹣2),與橢圓E的方程聯(lián)立 ,得(1+5k2)x2﹣20k2x+20k2﹣5=0

△=400k4﹣20(5k2+1)(4k2﹣1)=20(k2+1)>0.

=

直線l的方程為y=k(x﹣2),

與拋物線G的方程聯(lián)立 ,得k2x2﹣(4k2+8)x+4k2=0.

=

要使 為常數(shù),則20+ =4,得

故存在 ,使 為常數(shù).


【解析】(1)由點到直線的距離公式列式求出c的值,結(jié)合土偶眼離心率求出a的值,再由拋物線G:y2=2px(p>0)的焦點與橢圓E的焦點重合即可求得橢圓方程和拋物線方程;(2)依次射出A,B,C,D四點的坐標(biāo),設(shè)出直線l的方程,聯(lián)立直線方程和圓錐曲線方程,利用根與系數(shù)關(guān)系分別寫出A,B兩點橫坐標(biāo)的和與積,寫出C,D兩點橫坐標(biāo)的和與積,利用弦長公式求出AB和CD的長度,代入 后可求出使 為常數(shù)的λ的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的k值為(

A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax(a>0,a≠1)在區(qū)間[﹣1,2]上的最大值為8,最小值為m.若函數(shù)g(x)=(3﹣10m) 是單調(diào)增函數(shù),則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時,xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3200元時,可全部租出。當(dāng)每輛車的月租金每增加50元時(租金增減為50元的整數(shù)倍),未租出的車將會增加一輛。租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元。

(1)當(dāng)每輛車的月租金定為3600元時,能租出多少輛車?

(2)設(shè)租金為(3200+50x)元/輛(xN),用x表示租賃公司的月收益y(單位:元)。

(3)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為 ,(α為參數(shù)),以原點O為極點,x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+ )=4
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上的動點,求點P到C2上點的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

(1) 求實數(shù)的值;

(2) 判斷并用定義證明該函數(shù)在定義域上的單調(diào)性;

(3) 若方程內(nèi)有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合、的一個等濃二分劃(即,.記集合中所有數(shù)的積為,集合中所有數(shù)的積為,的等濃二分劃的特征數(shù).證明:

(1)集合的等濃二分劃的特征數(shù)一定為合數(shù);

(2)若等濃二分劃的特征數(shù)不為2的倍數(shù),則該特征數(shù)為的倍數(shù).

有限集合的元素個數(shù)簡記為.

查看答案和解析>>

同步練習(xí)冊答案