【題目】在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為 ,(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+ )=4
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值.

【答案】
(1)解:由 得cosα= ,sinα=y.∴曲線C1的普通方程是

,∴ρsinθ+ρcosθ=8.即x+y﹣8=0.∴曲線C2的直角坐標(biāo)方程時(shí)x+y﹣8=0.


(2)解:設(shè)P點(diǎn)坐標(biāo)( ,sinα),∴P到直線C2的距離d= =

∴當(dāng)sin(α+ )=1時(shí),d取得最小值 =3


【解析】(1)利用cos2α+sin2α=1消參數(shù)得到C1的普通方程,將極坐標(biāo)方程左側(cè)展開即可得到直角坐標(biāo)方程;(2)利用C1的參數(shù)方程求出P到C2的距離,根據(jù)三角函數(shù)的性質(zhì)求出距離的最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為偶函數(shù),且當(dāng)時(shí),.記.給出下列關(guān)于函數(shù)的說法:①當(dāng)時(shí),;②函數(shù)為奇函數(shù);③函數(shù)上為增函數(shù);④函數(shù)的最小值為,無最大值. 其中正確的是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形與正三角形的邊長(zhǎng)均為,它們所在平面互相垂直, 平面,且

)求證:平面平面

)若,求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是等比數(shù)列,公比為q(q>0且q≠1),4a1 , 3a2 , 2a3成等差數(shù)列,且它的前4項(xiàng)和為S4=15.
(1)求{an}通項(xiàng)公式;
(2)令bn=an+2n(n=1,2,3…),求{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓E: + =1(a>b>0)的焦點(diǎn)到直線x﹣3y=0的距離為 ,離心率為 ,拋物線G:y2=2px(p>0)的焦點(diǎn)與橢圓E的焦點(diǎn)重合;斜率為k的直線l過G的焦點(diǎn)與E交于A,B,與G交于C,D.
(1)求橢圓E及拋物線G的方程;
(2)是否存在學(xué)常數(shù)λ,使 為常數(shù),若存在,求λ的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面, , , 中點(diǎn).

(Ⅰ)求證: 平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在點(diǎn),使得?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校進(jìn)行社會(huì)實(shí)踐,對(duì)歲的人群隨機(jī)抽取 1000 人進(jìn)行了一次是否開通“微博”的調(diào)查,開通“微博”的為“時(shí)尚族”,否則稱為“非時(shí)尚族”.通過調(diào)查得到到各年齡段人數(shù)的頻率分布直方圖如圖所示,其中在歲, 歲年齡段人數(shù)中,“時(shí)尚族”人數(shù)分別占本組人數(shù)的.

(1)求歲與歲年齡段“時(shí)尚族”的人數(shù);

(2)從歲和歲年齡段的“時(shí)尚族”中,采用分層抽樣法抽取6人參加網(wǎng)絡(luò)時(shí)尚達(dá)人大賽,其中兩人作為領(lǐng)隊(duì).求領(lǐng)隊(duì)的兩人年齡都在歲內(nèi)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為,若 軸垂直,且.

(1)求橢圓方程;

(2)過點(diǎn)且不垂直于坐標(biāo)軸的直線與橢圓交于兩點(diǎn),已知點(diǎn),當(dāng)時(shí),求滿足的直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .若gx)存在2個(gè)零點(diǎn),則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案