【題目】如圖,在四棱錐中,底面為矩形,平面平面 , 中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在點(diǎn),使得?若存在,求的值;若不存在,說(shuō)明理由.

【答案】(I)詳見(jiàn)解析;(II);(III).

【解析】試題分析:

(1)利用題意證得,然后由線面平行的判斷定理可得平面.

(2)建立空間直角坐標(biāo)系,利用平面向量的法向量可得二面角的余弦值為.

(3)探索性問(wèn)題,利用空間向量的結(jié)論可得在棱上存在點(diǎn),使得,

此時(shí)

試題解析:

(Ⅰ)證明:設(shè)的交點(diǎn)為,連接.

因?yàn)?/span>為矩形,所以的中點(diǎn),

中,由已知中點(diǎn),

所以

平面, 平面

所以平面.

(Ⅱ)解:取中點(diǎn),連接.

因?yàn)?/span>是等腰三角形, 的中點(diǎn),

所以,

又因?yàn)槠矫?/span>平面,

因?yàn)?/span>平面,

所以平面

中點(diǎn),連接

由題設(shè)知四邊形為矩形,

所以,

所以. 

如圖建立空間直角坐標(biāo)系,則, , , , ., .

設(shè)平面的法向量為,則

,則, ,所以.

平面的法向量為,

設(shè), 的夾角為,所以.

由圖可知二面角為銳角,

所以二面角的余弦值為.

(Ⅲ)設(shè)是棱上一點(diǎn),則存在使得

因此點(diǎn), ,

,即

因?yàn)?/span>,所以在棱上存在點(diǎn),使得,

此時(shí)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角梯形ABCD中,AD∥BC,∠A=90°,AB=2AD,若將△ABD沿直線BD折成△A′BD,使得A′D⊥BC,則直線A′B與平面BCD所成角的正弦值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)R(x0 , y0)在D:y2=2px上,以R為切點(diǎn)的D的切線的斜率為 ,過(guò)Γ外一點(diǎn)A(不在x軸上)作Γ的切線AB、AC,點(diǎn)B、C為切點(diǎn),作平行于BC的切線MN(切點(diǎn)為D),點(diǎn)M、N分別是與AB、AC的交點(diǎn)(如圖).

(1)用B、C的縱坐標(biāo)s、t表示直線BC的斜率;
(2)設(shè)三角形△ABC面積為S,若將由過(guò)Γ外一點(diǎn)的兩條切線及第三條切線(平行于兩切線切點(diǎn)的連線)圍成的三角形叫做“切線三角形”,如△AMN,再由M、N作“切線三角形”,并依這樣的方法不斷作切線三角形…,試?yán)谩扒芯三角形”的面積和計(jì)算由拋物線及BC所圍成的陰影部分的面積T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《城市規(guī)劃管理意見(jiàn)》中提出“新建住宅原則上不再建設(shè)封閉住宅小區(qū),已建成的住宅小區(qū)和單位大院逐步打開(kāi)”,此消息在網(wǎng)上一石激起千層浪.各種說(shuō)法不一而足,為了了解居民對(duì)“開(kāi)放小區(qū)”認(rèn)同與否,從[25,55]歲人群中隨機(jī)抽取了n人進(jìn)行問(wèn)卷調(diào)查,得如下數(shù)據(jù):

組數(shù)

分組

認(rèn)同人數(shù)

認(rèn)同人數(shù)占
本組人數(shù)比

第一組

[25,30)

120

0.6

第二組

[30,35)

195

p

第三組

[35,40)

100

0.5

第四組

[40,45)

a

0.4

第五組

[45,50)

30

0.3

第六組

[50,55)

15

0.3


(1)完成所給頻率分布直方圖,并求n,a,p.
(2)若從[40,45),[45,50)兩個(gè)年齡段中的“認(rèn)同”人群中,按分層抽樣的方法抽9人參與座談會(huì),然后從這9人中選2名作為組長(zhǎng),組長(zhǎng)年齡在[40,45)內(nèi)的人數(shù)記為ξ,求隨機(jī)變量ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為 ,(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+ )=4
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人同時(shí)生產(chǎn)內(nèi)徑為的一種零件,為了對(duì)兩人的生產(chǎn)質(zhì)量進(jìn)行評(píng)比,從他們生產(chǎn)的零件中各抽出 5 件(單位: ) ,

甲:25.44,25.43, 25.41,25.39,25.38

乙:25.41,25.42, 25.41,25.39,25.42.

從生產(chǎn)的零件內(nèi)徑的尺寸看、誰(shuí)生產(chǎn)的零件質(zhì)量較高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了凈化空氣,某科研單位根據(jù)實(shí)驗(yàn)得出,在一定范圍內(nèi),每噴灑1個(gè)單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時(shí)間x(單位:天)變化的函數(shù)關(guān)系式近似為y 若多次噴灑,則某一時(shí)刻空氣中的凈化劑濃度為每次投放的凈化劑在相應(yīng)時(shí)刻所釋放的濃度之和.由實(shí)驗(yàn)知,當(dāng)空氣中凈化劑的濃度不低于4(毫克/立方米)時(shí),它才能起到凈化空氣的作用.

(1)若一次噴灑4個(gè)單位的凈化劑,則凈化時(shí)間可達(dá)幾天?

(2)若第一次噴灑2個(gè)單位的凈化劑,6天后再噴灑a(1≤a≤4)個(gè)單位的藥劑,要使接下來(lái)的4天中能夠持續(xù)有效凈化,試求a的最小值(精確到0.1,參考數(shù)據(jù): 取1.4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)全集為R,集合A={x| ≥0},B={x|﹣2≤x<0},則(RA)∩B=(
A.(﹣1,0)
B.[﹣1,0)
C.[﹣2,﹣1]
D.[﹣2,﹣1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列個(gè)結(jié)論:

①棱長(zhǎng)均相等的棱錐一定不是六棱錐;

②函數(shù)既不是奇函數(shù)又不是偶函數(shù);

③若函數(shù)的值域?yàn)?/span>,則實(shí)數(shù)的取值范圍是;

④若函數(shù)滿足條件,則的最小值為

其中正確的結(jié)論的序號(hào)是:______. (寫(xiě)出所有正確結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案