【題目】設(shè)全集為R,集合A={x| ≥0},B={x|﹣2≤x<0},則(RA)∩B=( )
A.(﹣1,0)
B.[﹣1,0)
C.[﹣2,﹣1]
D.[﹣2,﹣1)
【答案】B
【解析】解:∵集合A={x| ≥0}={x|﹣1<x≤1}=(﹣1,1],
∴RA=(﹣∞,﹣1]∪(1,+∞),
∵B={x|﹣2≤x<0}=[﹣2,0)
∴(RA)∩B=[﹣1,0)
故選:B.
【考點精析】解答此題的關(guān)鍵在于理解交、并、補集的混合運算的相關(guān)知識,掌握求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強數(shù)形結(jié)合的思想方法.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人同時生產(chǎn)內(nèi)徑為的一種零件,為了對兩人的生產(chǎn)質(zhì)量進(jìn)行評比,從他們生產(chǎn)的零件中各抽出 5 件(單位: ) ,
甲:25.44,25.43, 25.41,25.39,25.38
乙:25.41,25.42, 25.41,25.39,25.42.
從生產(chǎn)的零件內(nèi)徑的尺寸看、誰生產(chǎn)的零件質(zhì)量較高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面, , , , 為中點.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點,使得?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一動點, 到點的距離減去它到軸距離的差都是.
()求動點的軌跡方程.
()設(shè)動點的軌跡為,已知定點、,直線、與軌跡的另一個交點分別為、.
(i)點能否為線段的中點,若能,求出直線的方程,若不能,說明理由.
(ii)求證:直線過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的左、右焦點為,右頂點為,上頂點為,若, 與軸垂直,且.
(1)求橢圓方程;
(2)過點且不垂直于坐標(biāo)軸的直線與橢圓交于兩點,已知點,當(dāng)時,求滿足的直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足[2﹣(﹣1)n]an+[2+(﹣1)n]an+1=1+(﹣1)n×3n,則a25﹣a1= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率是,過點的動直線與橢圓相交于兩點,當(dāng)直線與軸平行時,直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在異于點的定點,使得直線變化時,總有?若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】統(tǒng)計表明,家庭的月理財投入(單位:千元)與月收入(單位:千元)之間具有線性相關(guān)關(guān)系.某銀行隨機抽取5個家庭,獲得第()個家庭的月理財投入與月收入的數(shù)據(jù)資料,經(jīng)計算得.
(1)求關(guān)于的回歸方程;
(2)判斷與之間是正相關(guān)還是負(fù)相關(guān);
(3)若某家庭月理財投入為5千元,預(yù)測該家庭的月收入.
附:回歸方程的斜率與截距的最小二乘估計公式分別為:
,其中為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1 , F2分別為橢圓C: + =1(a>b>0)的左、右兩個焦點,橢圓上點M( , )到F1、F2兩點的距離之和等于4.
(1)求橢圓C的方程;
(2)已知過右焦點且垂直于x軸的直線與橢圓交于點N(點N在第一象限),E,F(xiàn)是橢圓C上的兩個動點,如果kEN+KFN=0,證明直線EF的斜率為定值,并求出這個定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com