【題目】已知一動點, 到點的距離減去它到軸距離的差都是

)求動點的軌跡方程.

)設動點的軌跡為,已知定點、,直線、與軌跡的另一個交點分別為、

i)點能否為線段的中點,若能,求出直線的方程,若不能,說明理由.

ii)求證:直線過定點.

【答案】(1) (2)①②見解析

【解析】試題分析:(1)由題意易得: ,坐標化易得動點的軌跡方程;2)(i)設, , ,假設能為中點,則,利用點在拋物線上可得, 方程: ,∵有兩個交點,易得, 從而得到直線的方程;ii)設, 得到,同理可得: ,,從而得到直線過定點.

試題解析:

, ,

, ,

i)設 ,

假設能為中點,則,

, 在軌跡方程上,則:

,

,

,

方程: ,即,

,

有兩個交點,

, ,

, ,

,即

,

,

,

,

,

ii)設,

,

,

,

,

, ,

,

同理得: ,

,

,

,

整理可得: ,

, , , ,

,

恒過

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點是坐標原點焦點軸的正半軸上,過焦點且斜率為的直線與拋物線交于兩點,且滿足.

1)求拋物線的方程;

(2)已知為拋物線上一點,若點位于軸下方且,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《城市規(guī)劃管理意見》中提出“新建住宅原則上不再建設封閉住宅小區(qū),已建成的住宅小區(qū)和單位大院逐步打開”,此消息在網(wǎng)上一石激起千層浪.各種說法不一而足,為了了解居民對“開放小區(qū)”認同與否,從[25,55]歲人群中隨機抽取了n人進行問卷調查,得如下數(shù)據(jù):

組數(shù)

分組

認同人數(shù)

認同人數(shù)占
本組人數(shù)比

第一組

[25,30)

120

0.6

第二組

[30,35)

195

p

第三組

[35,40)

100

0.5

第四組

[40,45)

a

0.4

第五組

[45,50)

30

0.3

第六組

[50,55)

15

0.3


(1)完成所給頻率分布直方圖,并求n,a,p.
(2)若從[40,45),[45,50)兩個年齡段中的“認同”人群中,按分層抽樣的方法抽9人參與座談會,然后從這9人中選2名作為組長,組長年齡在[40,45)內的人數(shù)記為ξ,求隨機變量ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩人同時生產(chǎn)內徑為的一種零件,為了對兩人的生產(chǎn)質量進行評比,從他們生產(chǎn)的零件中各抽出 5 件(單位: ) ,

甲:25.44,25.43, 25.41,25.39,25.38

乙:25.41,25.42, 25.41,25.39,25.42.

從生產(chǎn)的零件內徑的尺寸看、誰生產(chǎn)的零件質量較高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了凈化空氣,某科研單位根據(jù)實驗得出,在一定范圍內,每噴灑1個單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數(shù)關系式近似為y 若多次噴灑,則某一時刻空氣中的凈化劑濃度為每次投放的凈化劑在相應時刻所釋放的濃度之和.由實驗知,當空氣中凈化劑的濃度不低于4(毫克/立方米)時,它才能起到凈化空氣的作用.

(1)若一次噴灑4個單位的凈化劑,則凈化時間可達幾天?

(2)若第一次噴灑2個單位的凈化劑,6天后再噴灑a(1≤a≤4)個單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求a的最小值(精確到0.1,參考數(shù)據(jù): 取1.4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合,若AB=B,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設全集為R,集合A={x| ≥0},B={x|﹣2≤x<0},則(RA)∩B=(
A.(﹣1,0)
B.[﹣1,0)
C.[﹣2,﹣1]
D.[﹣2,﹣1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=(x+1)lnx﹣a(x﹣1).
(1)若函數(shù)f(x)在x=e處的切線與y軸相交于點(0,2﹣e),求a的值;
(2)當1<x<2時,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},a1=1,且an1﹣an1an﹣an=0(n≥2,n∈N*),記bn=a2n1a2n+1 , 數(shù)列{bn}的前n項和為Tn , 則滿足不等式Tn 成立的最大正整數(shù)n為

查看答案和解析>>

同步練習冊答案