【題目】已知數(shù)列{an}滿足[2﹣(﹣1)n]an+[2+(﹣1)n]an+1=1+(﹣1)n×3n,則a25﹣a1=

【答案】300
【解析】解:∵[2﹣(﹣1)n]an+[2+(﹣1)n]an+1=1+(﹣1)n×3n,
∴n=2k(k∈N*),可得:a2k+3a2k+1=1+6k,
n=2k﹣1(k∈N*),可得:3a2k1+a2k=1﹣6k+3,
∴a2k+1﹣a2k1=4k﹣1,
∴a25=(a25﹣a23)+(a23﹣a21)+…+(a3﹣a1)+a1
=(4×12﹣1)+(4×11﹣1)+…+(4×1﹣1)+a1= ﹣12+a1=300+a1
則a25﹣a1=300,
故答案為:300.
由[2﹣(﹣1)n]an+[2+(﹣1)n]an+1=1+(﹣1)n×3n,當(dāng)n=2k(k∈N*),可得:a2k+3a2k+1=1+6k,n=2k﹣1(k∈N*),可得:3a2k1+a2k=1﹣6k+3,于是a2k+1﹣a2k1=4k﹣1,利用“累加求和”方法與等差數(shù)列的前n項(xiàng)和公式即可得出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來城市共享單車的投放在我國各地迅猛發(fā)展,共享單車為人們出行提供了很大的便利,但也給城市的管理帶來了一些困難,現(xiàn)某城市為了解人們對共享單車投放的認(rèn)可度,對年齡段的人群隨機(jī)抽取人進(jìn)行了一次你是否贊成投放共享單車的問卷調(diào)查,根據(jù)調(diào)查結(jié)果得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:

組號

分組

贊成投放的人數(shù)

贊成投放的人數(shù)占本組的頻率

第一組

第二組

第三組

第四組

第五組

第六組

)求 , 的值.

)在第四、五、六組贊成投放共享單車的人中,用分層抽樣的方法抽取人參加共享單車騎車體驗(yàn)活動(dòng),求第四、五、六組應(yīng)分別抽取的人數(shù).

)在()中抽取的人中隨機(jī)選派人作為領(lǐng)隊(duì),求所選派的人中第五組至少有一人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人同時(shí)生產(chǎn)內(nèi)徑為的一種零件,為了對兩人的生產(chǎn)質(zhì)量進(jìn)行評比,從他們生產(chǎn)的零件中各抽出 5 件(單位: ) ,

甲:25.44,25.43, 25.41,25.39,25.38

乙:25.41,25.42, 25.41,25.39,25.42.

從生產(chǎn)的零件內(nèi)徑的尺寸看、誰生產(chǎn)的零件質(zhì)量較高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合,若AB=B,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集為R,集合A={x| ≥0},B={x|﹣2≤x<0},則(RA)∩B=(
A.(﹣1,0)
B.[﹣1,0)
C.[﹣2,﹣1]
D.[﹣2,﹣1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,滿足2acosB=2c﹣b.
(1)求角A;
(2)若△ABC的面積為 ,且a= ,請判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(x+1)lnx﹣a(x﹣1).
(1)若函數(shù)f(x)在x=e處的切線與y軸相交于點(diǎn)(0,2﹣e),求a的值;
(2)當(dāng)1<x<2時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率是,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為,直線與橢圓交于兩點(diǎn).

(1)求橢圓的方程;

(2)當(dāng)實(shí)數(shù)變化時(shí),求的最大值;

(3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 .

1)已知直線與雙曲線交于不同的兩點(diǎn),,求實(shí)數(shù)的值;

(2)過點(diǎn)作直線與雙曲線交于不同的兩點(diǎn)若弦恰被點(diǎn)平分,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案