【題目】給出下列個結論:

①棱長均相等的棱錐一定不是六棱錐;

②函數(shù)既不是奇函數(shù)又不是偶函數(shù);

③若函數(shù)的值域為,則實數(shù)的取值范圍是;

④若函數(shù)滿足條件,則的最小值為

其中正確的結論的序號是:______. (寫出所有正確結論的序號)

【答案】①,③,④

【解析】

對所給的四個結論分別進行分析、判斷后可得正確的結論的序號

對于①,由平面幾何知識可得,正六邊形的中心到各頂點的距離等于邊長,此時中心與各頂點構成平面圖形,所以棱長均相等的棱錐一定不是六棱錐.所以①正確.

對于②,由,故函數(shù)的定義域為,所以,所以,為偶函數(shù).所以②不正確.

對于③,設,由于函數(shù)的值域為,所以能夠取盡所有的正數(shù),即函數(shù)的圖象與x軸有公共點.當時,,滿足題意;當時,則有,解得.綜上可得實數(shù)的取值范圍是,所以③正確.

對于④,以代替中的可得,由消去整理得,所以,當且僅當,即時等號成立.所以④正確.

綜上可得正確結論的序號為①③④.

故答案為①③④.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面, , , 中點.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在點,使得?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的離心率是,過點的動直線與橢圓相交于兩點當直線軸平行時直線被橢圓截得的線段長為.

(Ⅰ)求橢圓的方程;

(Ⅱ)在軸上是否存在異于點的定點,使得直線變化時,總有若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】統(tǒng)計表明,家庭的月理財投入(單位:千元)與月收入(單位:千元)之間具有線性相關關系.某銀行隨機抽取5個家庭,獲得第)個家庭的月理財投入與月收入的數(shù)據(jù)資料,經(jīng)計算得

(1)求關于的回歸方程

(2)判斷之間是正相關還是負相關;

(3)若某家庭月理財投入為5千元,預測該家庭的月收入.

附:回歸方程的斜率與截距的最小二乘估計公式分別為:

,其中為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .若gx)存在2個零點,則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過雙曲線 =1(a>0,b>0)的右焦點F作漸近線的垂線,設垂足為P(P為第一象限的點),延長FP交拋物線y2=2px(p>0)于點Q,其中該雙曲線與拋物線有一個共同的焦點,若 = + ),則雙曲線的離心率的平方為( )
A.
B.
C.
+1
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) , ,

有零點 m 的取值范圍;

確定 m 的取值范圍,使得有兩個相異實根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1 , F2分別為橢圓C: + =1(a>b>0)的左、右兩個焦點,橢圓上點M( , )到F1、F2兩點的距離之和等于4.
(1)求橢圓C的方程;
(2)已知過右焦點且垂直于x軸的直線與橢圓交于點N(點N在第一象限),E,F(xiàn)是橢圓C上的兩個動點,如果kEN+KFN=0,證明直線EF的斜率為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸,生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸。銷售每噸甲產(chǎn)品可獲得利潤5萬元,每噸乙產(chǎn)品可獲得利潤3萬元,該企業(yè)在一個生產(chǎn)周期內(nèi)消耗A原料不超過13噸,B原料不超過18噸,那么該企業(yè)可獲得最大利潤是___________萬元

查看答案和解析>>

同步練習冊答案