【題目】已知函數(shù) , ,
⑴ 若有零點,求 m 的取值范圍;
⑵ 確定 m 的取值范圍,使得有兩個相異實根.
【答案】(1) ;(2) ;
【解析】
(1) 在x>0時有根,再對 (2)記,證明h(x)在(0,e)上單調(diào)遞減,在(e,+∞)上單調(diào)遞增,根據(jù)零點定理h(e)<0,解得,再證明在(e,+∞)上只有一個零點,在(0,e)上只有一個零點,綜上即可得解.
(1) 在x>0有根,當(dāng)時則或m≤-2e(舍),當(dāng)時,f(0)=e2,則f(0)≤0無解,則m≥2e.
(2)記,
則可以證明h(x)在(0,e)上單調(diào)遞減,在(e,+∞)上單調(diào)遞增,證明如下:
任取,令, 由于, , 所以,所以函數(shù)在(0,e)上單調(diào)遞減;同理可證得在(e,+∞)上單調(diào)遞增,
所以h(e)為函數(shù)最小值,根據(jù)零點定理h(e)<0,解得,
以下說明必存在函數(shù)值大于零:
首先說明(e,+∞)上,當(dāng)m≥2e時, ,當(dāng)時, ;所以在(e,+∞)上只有一個零點。
再說明(0,e)上, ,所以取即中中較小值,當(dāng)即時, ;當(dāng)即時, ;所以在(0,e)上只有一個零點。
綜上, .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了凈化空氣,某科研單位根據(jù)實驗得出,在一定范圍內(nèi),每噴灑1個單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數(shù)關(guān)系式近似為y= 若多次噴灑,則某一時刻空氣中的凈化劑濃度為每次投放的凈化劑在相應(yīng)時刻所釋放的濃度之和.由實驗知,當(dāng)空氣中凈化劑的濃度不低于4(毫克/立方米)時,它才能起到凈化空氣的作用.
(1)若一次噴灑4個單位的凈化劑,則凈化時間可達(dá)幾天?
(2)若第一次噴灑2個單位的凈化劑,6天后再噴灑a(1≤a≤4)個單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求a的最小值(精確到0.1,參考數(shù)據(jù): 取1.4).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,設(shè),,(,為常數(shù)).
(1)求的最小值及相應(yīng)的的值;
(2)設(shè),若,求的取值范圍;
(3)若對任意,以、、為三邊長總能構(gòu)成三角形,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列個結(jié)論:
①棱長均相等的棱錐一定不是六棱錐;
②函數(shù)既不是奇函數(shù)又不是偶函數(shù);
③若函數(shù)的值域為,則實數(shù)的取值范圍是;
④若函數(shù)滿足條件,則的最小值為.
其中正確的結(jié)論的序號是:______. (寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點,焦點在x軸上,左、右焦點分別為F1、F2,且|F1F2|=2,點在橢圓C上.
(1)求橢圓C的方程;
(2)過F1的直線l與橢圓C相交于A、B兩點,且△AF2B的面積為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},a1=1,且an﹣1﹣an﹣1an﹣an=0(n≥2,n∈N*),記bn=a2n﹣1a2n+1 , 數(shù)列{bn}的前n項和為Tn , 則滿足不等式Tn< 成立的最大正整數(shù)n為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐S﹣ABCD,SB⊥AD,側(cè)面SAD是邊長為4的等邊三角形,底面ABCD為菱形,側(cè)面SAD與底面ABCD所成的二面角為120°.
(1)求點S到平面ABCD的距離;
(2)若E為SC的中點,求二面角A﹣DE﹣C的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海關(guān)對同時從三個不同地區(qū)進口的某種商品進行隨機抽樣檢測,已知從三個地區(qū)抽取的商品件數(shù)分別是50,150,100.檢測人員再用分層抽樣的方法從海關(guān)抽樣的這些商品中隨機抽取6件樣品進行檢測.
(1)求這6件樣品中,來自各地區(qū)商品的數(shù)量;
(2)若在這6件樣品中隨機抽取2件送往另一機構(gòu)進行進一步檢測,求這2件樣品來自相同地區(qū)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2acosθ(a>0),直線l的參數(shù)方程為 (t為參數(shù)),l與C分別交于M,N,P(﹣2,﹣4).
(1)寫出C的平面直角坐標(biāo)系方程和l的普通方程;
(2)已知|PM|,|MN|,|PN|成等比數(shù)列,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com