【題目】如圖,為拋物線上的兩個不同的點,且線段的中點在直線上,當點的縱坐標為1時,點的橫坐標為.

1)求拋物線的標準方程;

2)若點軸兩側(cè),拋物線的準線與軸交于點,直線的斜率分別為,求的取值范圍.

【答案】12

【解析】

1)根據(jù)題意,當點的坐標為時,設(shè)點,則點,再將其代入拋物線方程解得即可;

2)設(shè)直線的方程為,設(shè),由線段的中點在直線上,可得,進而可得直線的方程為,再表示出直線的斜率,進而運算即可.

1)由題意知,當點的坐標為時,設(shè)點,則點,

因為為拋物線上的兩個不同的點,所以解得

所以拋物線的標準方程為.

2)顯然直線的斜率存在且不為0,故可設(shè)直線的方程為,

聯(lián)立方程,得消去,化簡并整理得.

,即.

設(shè),則

所以,

故直線的方程為.

易知,所以,

所以.

因為,所以,當且僅當時取等號,所以.

的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】秉承綠水青山就是金山銀山的發(fā)展理念,某市環(huán)保部門通過制定評分標準,先對本市50%的企業(yè)進行評估,評出四個等級,并根據(jù)等級給予相應(yīng)的獎懲,如下表所示:

評估得分

評定等級

不合格

合格

良好

優(yōu)秀

獎勵(萬元)

20

40

80

1)環(huán)保部門對企業(yè)抽查評估完成后,隨機抽取了50家企業(yè)的評估得分(分)為樣本,得到如下頻率分布表:

評估得分

頻率

0.04

0.10

0.20

0.12

其中表示模糊不清的兩個數(shù)字,但知道樣本評估得分的平均數(shù)是73.6.現(xiàn)從樣本外的數(shù)百個企業(yè)評估得分中隨機抽取3個,若以樣本中頻率為概率,求至少有兩家企業(yè)的獎勵不少于40萬元的概率;

2)某企業(yè)為取得一個好的得分,在評估前投入80萬元進行技術(shù)改造,由于技術(shù)水平問題,被評定為合格”“良好優(yōu)秀的概率分別為,且由此增加的產(chǎn)值分別為20萬元,40萬元和60萬元.設(shè)該企業(yè)當年因改造而增加的利潤為萬元,求的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

1)當時,求曲線在點處的切線方程;

2時,求在區(qū)間上的最大值和最小值;

3)當時,若方程在區(qū)間上有唯一解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在傳染病學中,通常把從致病刺激物侵人機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對應(yīng)的相關(guān)癥狀時止的這一階段稱為潛伏期. 一研究團隊統(tǒng)計了某地區(qū)1000名患者的相關(guān)信息,得到如下表格:

潛伏期(單位:天)

人數(shù)

1)求這1000名患者的潛伏期的樣本平均數(shù)x (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表) ;

2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標準進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認為潛伏期與患者年齡有關(guān);

潛伏期

潛伏期

總計

歲以上(含歲)

歲以下

總計

3)以這1000名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨立,為了深入研究,該研究團隊隨機調(diào)查了20名患者,其中潛伏期超過6天的人數(shù)最有可能(即概率最大)是多少?

附:

,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知拋物線的準線方程為

1)求p的值;

2)過拋物線C的焦點的直線l交拋物線C于點AB,交拋物線C的準線于點P,若A為線段PB的中點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班同學在假期進行社會實踐活動,對歲的人群隨機抽取n人進行了一次當前投資生活方式——“房地產(chǎn)投資的調(diào)查,得到如下統(tǒng)計和各年齡段人數(shù)頻率分布直方圖:

)求,,的值;

)從年齡在歲的房地產(chǎn)投資人群中采取分層抽樣法抽取9人參加投資管理學習活動,其中選取3人作為代表發(fā)言,記選取的3名代表中年齡在歲的人數(shù)為,求的分布列和期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)在所給的坐標紙上作出函數(shù)的圖像(不要求寫出作圖過程);

2)令 求函數(shù)的定義域及不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若的圖象上相鄰兩條對稱軸的距離為,圖象過點.

1)求的表達式和的遞增區(qū)間;

2)將函數(shù)的圖象向右平移個單位長度,再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象.若函數(shù)在區(qū)間上有且只有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學高三(3)班有學生50人,現(xiàn)調(diào)查該班學生每周平均體育鍛煉時間的情況,得到如下頻率分布直方圖,其中數(shù)據(jù)的分組區(qū)間為:,,,,

(1)從每周平均體育鍛煉時間在的學生中,隨機抽取2人進行調(diào)查,求這2人的每周平均體育鍛煉時間都超過2小時的概率;

(2)已知全班學生中有40%是女姓,其中恰有3個女生的每周平均體育鍛煉時間不超過4小時,若每周平均體育鍛煉時間超過4小時稱為經(jīng)常鍛煉,問:有沒有90%的把握說明,經(jīng)常鍛煉與否與性別有關(guān)?

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案