【題目】在傳染病學中,通常把從致病刺激物侵人機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對應(yīng)的相關(guān)癥狀時止的這一階段稱為潛伏期. 一研究團隊統(tǒng)計了某地區(qū)1000名患者的相關(guān)信息,得到如下表格:

潛伏期(單位:天)

人數(shù)

1)求這1000名患者的潛伏期的樣本平均數(shù)x (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表) ;

2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標準進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認為潛伏期與患者年齡有關(guān);

潛伏期

潛伏期

總計

歲以上(含歲)

歲以下

總計

3)以這1000名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨立,為了深入研究,該研究團隊隨機調(diào)查了20名患者,其中潛伏期超過6天的人數(shù)最有可能(即概率最大)是多少?

附:

,其中.

【答案】1天;(2)見解析,沒有;(3人.

【解析】

1)根據(jù)統(tǒng)計數(shù)據(jù)計算平均數(shù)即可;(2)根據(jù)題意補充完整的列聯(lián)表,計算,對照臨界值表得出結(jié)論;(3)根據(jù)題意知隨機變量,計算概率,列不等式組并結(jié)合題意求出的值.

1天;

(2)根據(jù)題意補充完整的列聯(lián)表如下:

潛伏期

潛伏期

總計

歲以上(含歲)

歲以下

總計

,

所以沒有95%的把握認為潛伏期與患者年齡有關(guān);

(3)由題可得該地區(qū)1名患者潛伏期超過6天發(fā)生的概率為,

設(shè)調(diào)查的20名患者中潛伏期超過6天的人數(shù)為,則,,,

,即

化簡得解得,又,所以,

即這20名患者中潛伏期超過6天的人數(shù)最有可能時8人.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】對于給定的數(shù)列,,設(shè),即,,…,中的最大值,則稱數(shù)列是數(shù)列,的“和諧數(shù)列”.

1)設(shè),求,的值,并證明數(shù)列是等差數(shù)列;

2)設(shè)數(shù)列都是公比為q的正項等比數(shù)列,若數(shù)列是等差數(shù)列,求公比q的取值范圍;

3)設(shè)數(shù)列滿足,數(shù)列是數(shù)列,的“和諧數(shù)列”,且m為常數(shù),,2,…,k),求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項和為Sn,且a3+2S677,a10a510.

1)求數(shù)列{an}的通項公式;

2)數(shù)列{bn}滿足:b11,bnbn1ann+1n≥2),求數(shù)列{}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖.正四面體ABCD的頂點A,BC分別在兩兩垂直的三條射線OX,OYOZ上,則在下列命題中,錯誤的為(  。

A.OABC是正三棱錐B.二面角DOBA的平面角為

C.直線AD與直線OB所成角為D.直線OD⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中已知橢圓,焦點在x軸上的橢圓的離心率相同,且橢圓的外切矩形ABCD(兩組對邊分別平行于x軸、y軸)的頂點在橢圓.

1)求橢圓的標準方程.

2)設(shè)為橢圓上一點(不與點A、B、C、D重合).

①若直線:,求證:直線l與橢圓相交;

②記①中的直線l與橢圓C1的交點為S、T,求證的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓的右焦點、右頂點分別為F,A,過原點的直線與橢圓C交于點P、Q(點P在第一象限內(nèi)),連結(jié)PA,QF,的面積是面積的3倍.

1)求橢圓C的標準方程;

2)已知M為線段PA的中點,連結(jié)QA,QM

①求證:QF,M三點共線;

②記直線QP,QM,QA的斜率分別為,,若,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,為拋物線上的兩個不同的點,且線段的中點在直線上,當點的縱坐標為1時,點的橫坐標為.

1)求拋物線的標準方程;

2)若點軸兩側(cè),拋物線的準線與軸交于點,直線的斜率分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點坐標為,一條斜率為的直線分別交軸于點,交橢圓于點,且點三等分

1)求該橢圓的方程;

2)若是第一象限內(nèi)橢圓上的點,其橫坐標為2,過點的兩條不同的直線分別交橢圓于點,且直線的斜率之積,求證:直線恒過定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】回文數(shù)指從左向右讀與從右向左讀都一樣的正整數(shù),如22,343,122194249等.顯然兩位回文數(shù)有9個,即1122,3399;三位回文數(shù)有90個,即101121,131,…,191202,…,999.則四位回文數(shù)有______個,位回文數(shù)有______個.

查看答案和解析>>

同步練習冊答案