【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,AA1=AB=1,AD=2,E為BC的中點(diǎn),點(diǎn)M,N分別為棱DD1 , A1D1的中點(diǎn).
(1)求證:平面CMN∥平面A1DE;
(2)求證:平面A1DE⊥平面A1AE.
【答案】
(1)
證明:∵M(jìn),N分別為棱DD1,A1D1的中點(diǎn),∴MN∥A1D,
∵A1D平面A1DE,MN平面A1DE,∴MN∥平面A1CD.
∵E是BC中點(diǎn),N是A1D1的中點(diǎn),∴A1N=CE,A1N∥CE,
∴四邊形A1ECN是平行四邊形,∴CN∥A1E,
∵A1E平面A1DE,CN平面A1DE,∴CN∥平面A1CD,
又∵M(jìn)N∩CN=N,MN平面MCN,CN平面MCN,
∴平面CMN∥平面A1DE.
(2)
證明:∵AA1⊥平面ABCD,DE平面ABCD,
∴AA1⊥DE.
∵AB=1,AD=2,E為BC的中點(diǎn),
∴ ,
∴EA2+ED2=AD2,即AE⊥DE.
∵AA1平面AA1E,AE平面AA1E,AE∩AA1=A,
∴DE⊥平面A1AE.
又DE平面A1DE,所以平面A1DE⊥平面A1AE.
【解析】(I)由中位線(xiàn)定理可得MN∥A1D,由長(zhǎng)方體的結(jié)構(gòu)特征可得四邊形A1ECN是平行四邊形,故CN∥A1E,從而平面CMN∥平面A1DE;(2)由AA1⊥平面ABCD可得AA1⊥DE,由線(xiàn)段的長(zhǎng)度可由勾股定理的逆定理得出AE⊥DE,故DE⊥平面A1AE,從而平面A1DE⊥平面A1AE.
【考點(diǎn)精析】利用平面與平面平行的判定和平面與平面垂直的判定對(duì)題目進(jìn)行判斷即可得到答案,需要熟知判斷兩平面平行的方法有三種:用定義;判定定理;垂直于同一條直線(xiàn)的兩個(gè)平面平行;一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)x2+y=8與x軸交于A,B兩點(diǎn),動(dòng)點(diǎn)P與A,B連線(xiàn)的斜率之積為 .
(1)求動(dòng)點(diǎn)P的軌跡C的方程.
(2)MN是動(dòng)點(diǎn)P軌跡C的一條弦,且直線(xiàn)OM,ON的斜率之積為 .求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某畢業(yè)生參加人才招聘會(huì),分別向甲、乙、丙三個(gè)公司投遞了個(gè)人簡(jiǎn)歷,假定該畢業(yè)生得到甲公司面試的概率為 ,得到乙公司和丙公司面試的概率均為p,且三個(gè)公司是否讓其面試是相互獨(dú)立的.記ξ為該畢業(yè)生得到面試的公司個(gè)數(shù),若P(ξ=0)=
(Ⅰ)求p的值:
(Ⅱ)求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1(﹣1,0),F(xiàn)2(1,0)是橢圓C1與雙曲線(xiàn)C2共同的焦點(diǎn),橢圓的一個(gè)短軸端點(diǎn)為B,直線(xiàn)F1B與雙曲線(xiàn)的一條漸近線(xiàn)平行,橢圓C1與雙曲線(xiàn)C2的離心率分別為e1 , e2 , 則e1+e2取值范圍為( )
A.[2,+∞)
B.[4,+∞)
C.(4,+∞)
D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某樂(lè)園按時(shí)段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每玩一次不超過(guò)1小時(shí)收費(fèi)10元,超過(guò)1小時(shí)的部分每小時(shí)收費(fèi)8元(不足1小時(shí)的部分按1小時(shí)計(jì)算).現(xiàn)有甲、乙二人參與但都不超過(guò)4小時(shí),甲、乙二人在每個(gè)時(shí)段離場(chǎng)是等可能的.為吸引顧客,每個(gè)顧客可以參加一次抽獎(jiǎng)活動(dòng).
(1)用(10,10)表示甲乙玩都不超過(guò)1小時(shí)的付費(fèi)情況,求甲、乙二人付費(fèi)之和為44元的概率;
(2)抽獎(jiǎng)活動(dòng)的規(guī)則是:顧客通過(guò)操作按鍵使電腦自動(dòng)產(chǎn)生兩個(gè)[0,1]之間的均勻隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎(jiǎng)”,則該顧客中獎(jiǎng);若電腦顯示“謝謝”,則不中獎(jiǎng),求顧客中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,且經(jīng)過(guò)點(diǎn)A(0,﹣1).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)如果過(guò)點(diǎn) 的直線(xiàn)與橢圓交于M,N兩點(diǎn)(M,N點(diǎn)與A點(diǎn)不重合),求證:△AMN為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD與BDEF均為菱形,設(shè)AC與BD相交于點(diǎn)O,若∠DAB=∠DBF=60°,且FA=FC.
(1)求證:FC∥平面EAD;
(2)求直線(xiàn)AF與平面BCF所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C對(duì)邊的邊長(zhǎng)分別為a,b,c,給出下列四個(gè)結(jié)論: ①以 為邊長(zhǎng)的三角形一定存在;
②以 為邊長(zhǎng)的三角形一定存在;
③以a2 , b2 , c2為邊長(zhǎng)的三角形一定存在;
④以 為邊長(zhǎng)的三角形一定存在.
那么,正確結(jié)論的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com