【題目】某樂園按時(shí)段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每玩一次不超過1小時(shí)收費(fèi)10元,超過1小時(shí)的部分每小時(shí)收費(fèi)8元(不足1小時(shí)的部分按1小時(shí)計(jì)算).現(xiàn)有甲、乙二人參與但都不超過4小時(shí),甲、乙二人在每個(gè)時(shí)段離場是等可能的.為吸引顧客,每個(gè)顧客可以參加一次抽獎(jiǎng)活動(dòng).
(1)用(10,10)表示甲乙玩都不超過1小時(shí)的付費(fèi)情況,求甲、乙二人付費(fèi)之和為44元的概率;
(2)抽獎(jiǎng)活動(dòng)的規(guī)則是:顧客通過操作按鍵使電腦自動(dòng)產(chǎn)生兩個(gè)[0,1]之間的均勻隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎(jiǎng)”,則該顧客中獎(jiǎng);若電腦顯示“謝謝”,則不中獎(jiǎng),求顧客中獎(jiǎng)的概率.

【答案】
(1)

解:設(shè)甲付費(fèi)a元,乙付費(fèi)b元,其中a,b=10,18,26,34.

則甲、乙二人的費(fèi)用構(gòu)成的基本事件空間為:

(10,10),(10,18),(10,26),(10,34),(18,10),(18,18),(18,26),(18,34),

(26,10),(26,18),(26,26),(26,34),(34,10),(34,18),(34,26),(34,34)共16種情形.

其中,(10,34),(18,26),(26,18),(34,10)這4種情形符合題意.

故“甲、乙二人付費(fèi)之和為44元”的概率為


(2)

解:由已知0≤x≤1,0≤y≤1點(diǎn)(x,y)如圖的正方形OABC內(nèi),

由條件 ,得到的區(qū)域?yàn)閳D中陰影部分,

由x﹣2y+1=0,令x=0得 ;令x=1得y=1;

由條件滿足的區(qū)域面積

設(shè)顧客中獎(jiǎng)的事件為N,則顧客中獎(jiǎng)的概率


【解析】(1)設(shè)甲付費(fèi)a元,乙付費(fèi)b元,其中a,b=10,18,26,34,由此利用列舉法能求出“甲、乙二人付費(fèi)之和為44元”的概率.(2)由已知0≤x≤1,0≤y≤1點(diǎn)(x,y)在正方形OABC內(nèi),作出條件 的區(qū)域,由此能求出顧客中獎(jiǎng)的概率.
【考點(diǎn)精析】掌握程序框圖是解答本題的根本,需要知道程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a為實(shí)數(shù),p:點(diǎn)M(1,1)在圓(x+a)2+(y﹣a)2=4的內(nèi)部; q:x∈R,都有x2+ax+1≥0.
(1)若p為真命題,求a的取值范圍;
(2)若q為假命題,求a的取值范圍;
(3)若“p且q”為假命題,且“p或q”為真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC= ,O,M分別為AB,VA的中點(diǎn).
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB
(3)求三棱錐V﹣ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x| <2x<4},B={x|0<log2x<2}.
(1)求A∩B和A∪B;
(2)記M﹣N={x|x∈M,且xN},求A﹣B與B﹣A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從某地區(qū)隨機(jī)調(diào)查了100個(gè)用戶,得到用戶對產(chǎn)品的滿意度評分頻率分布表如下:

組別

分組

頻數(shù)

頻率

第一組

(50,60]

10

0.1

第二組

(60,70]

20

0.2

第三組

(70,80]

40

0.4

第四組

(80,90]

25

0.25

第五組

(90,100)

5

0.05

合計(jì)

100

1


(1)根據(jù)上面的頻率分布表,估計(jì)該地區(qū)用戶對產(chǎn)品的滿意度評分超過70分的概率;
(2)請由頻率分布表中數(shù)據(jù)計(jì)算眾數(shù)、中位數(shù),平均數(shù),根據(jù)樣本估計(jì)總體的思想,若平均分低于75分,視為不滿意.判斷該地區(qū)用戶對產(chǎn)品是否滿意?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體ABCD﹣A1B1C1D1中,AA1=AB=1,AD=2,E為BC的中點(diǎn),點(diǎn)M,N分別為棱DD1 , A1D1的中點(diǎn).

(1)求證:平面CMN∥平面A1DE;
(2)求證:平面A1DE⊥平面A1AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2﹣2x﹣4y+1=0.
(1)求過點(diǎn)M(3,1)的圓C的切線方程;
(2)若直線l:ax﹣y+4=0與圓C相交于A,B兩點(diǎn),且弦AB的長為 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:“x∈{x|﹣1≤x≤1},都有不等式x2﹣x﹣m<0成立”是真命題.
(1)求實(shí)數(shù)m的取值集合B;
(2)設(shè)不等式(x﹣3a)(x﹣a﹣2)<0的解集為A,若x∈A是x∈B的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知c=acosB+bsinA.
(1)求A;
(2)若a=2,b=c,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案