精英家教網 > 高中數學 > 題目詳情
11.已知集合A={1,2,3},B={1,3},則A∩B=( 。
A.{2}B.{1,3}C.{1,2}D.{1,2,3}

分析 利用交集定義直接求解.

解答 解:∵集合A={1,2,3},B={1,3},
∴A∩B={1,3}.
故選:B.

點評 本題考查交集的求法,是基礎題,解題時要認真審題,注意交集定義的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

1.已知i為虛數單位,則復數$z=\frac{1}{1-i}$在復平面內對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,焦距為2,離心率e為$\frac{1}{2}$.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過點$P({\frac{1}{2},1})$作圓$O:{x^2}+{y^2}=\frac{1}{2}$的切線,切點分別為M、N,直線MN與x軸交于點F,過點F的直線l交橢圓C于A、B兩點,點F關于y軸的對稱點為G,求△ABG的面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.在極坐標系中,圓ρ=8sinθ上的點到直線θ=$\frac{π}{3}$(ρ∈R)距離的最大值是(  )
A.-4B.-7C.1D.6

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.一種在實數域和復數域上近似求解方程的方法可以設計如圖所示的程序框圖,若輸入的n為6時,輸出結果為2.45,則m可以是(  )
A.0.6B.0.1C.0.01D.0.05

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.log${\;}_{\frac{1}{2}}$3,($\frac{1}{3}$)0.2,2${\;}^{\frac{1}{3}}$三個數中最大的數是2${\;}^{\frac{1}{3}}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知集合M={(x,y)|y=f(x)},若對于任意實數對(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,則稱集合M是“垂直對點集”,給出下列四個集合:
①M={(x,y)|y=$\frac{1}{{x}^{2}}$};
②M={(x,y)|y=sinx+1};
③={(x,y)|y=2x-2};
④M={(x,y)|y=log2x}
其中是“垂直對點集”的序號是(  )
A.②③④B.①②④C.①③④D.①②③

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知A,B,C是球O的球面上三點,若三棱錐O-ABC體積的最大值為1,則球O的體積為8π.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知函數f(x)=$\left\{\begin{array}{l}{\frac{1}{6}x+2,x>a}\\{{x}^{2}+3x+2,x≤a}\end{array}\right.$,函數g(x)=f(x)-ax,恰有三個不同的零點,則a的取值范圍是( 。
A.($\frac{1}{6}$,3-2$\sqrt{2}$)B.($\frac{1}{6}$,$\frac{3}{2}$)C.(-∞,3-2$\sqrt{2}$)D.(3-2$\sqrt{2}$,+∞)

查看答案和解析>>

同步練習冊答案