已知對任意正整數(shù)n,滿足fn+1(x)=fn′(x),且f1(x)=sinx,則f2013(x)=( 。
A.sinxB.-sinxC.cosxD.-cosx
由f1(x)=sinx,得f2(x)=f1(x)=(sinx)=cosx
f3(x)=f2(x)=(cosx)=-sinx
f4(x)=f3(x)=(-sinx)=-cosx
f5(x)=f4(x)=(-cosx)=sinx

由上可知,fn(x)呈周期出現(xiàn),且4為周期.
由2013=4×503+1
所以f2013(x)=f4×503+1(x)=f1(x)=sinx.
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題15分)已知a是實數(shù),函數(shù).
(Ⅰ)若f1(1)=3,求a的值及曲線在點處的切線
方程;
(Ⅱ)求在區(qū)間[0,2]上的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
已知,直線與函數(shù)的圖象都相切于點。   
(1)求直線的方程及的解析式;
(2)若(其中的導(dǎo)函數(shù)),求函數(shù)的極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=x(x+1)(x+2)…(x+99),則函數(shù)f(x)在x=0處的導(dǎo)數(shù)值為( 。
A.0B.99!C.100!D.4950

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)=xsinx的導(dǎo)函數(shù)為f′(x),則f′(x)等于( 。
A.xsinx+xcosxB.xcosx-xsinx
C.sinx-xcosxD.sinx+xcosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=(x+1)(x-1),則f′(2)=( 。
A.3B.2C.4D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)=2x3-x+1,則f′(x)=( 。
A.5x-1B.5xC.6x+1D.6x2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線y=在點(1,1)處的切線方程為(     )
A.x-y-2="0"B.x+y-2="0"C.x+4y-5="0"D.x-4y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù), (Ⅰ)求f (x)的單調(diào)遞增區(qū)間;(Ⅱ)若在區(qū)間[0,]內(nèi)至少存在一實數(shù)x0使得成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案