【題目】在平面直角坐標(biāo)系中,已知橢圓的左、右焦點(diǎn)分別為,且點(diǎn)與橢圓C的上頂點(diǎn)構(gòu)成邊長為2的等邊三角形.

1)求橢圓C的方程;

2)已知直線l與橢圓C相切于點(diǎn)P,且分別與直線和直線相交于點(diǎn).試判斷是否為定值,并說明理由.

【答案】12為定值;詳見解析

【解析】

1)根據(jù)題意可求得a,c的值,從而求得b,進(jìn)而得到橢圓方程;

2)設(shè)直線l的方程為,聯(lián)立直線l與橢圓C的方程,根據(jù)直線與橢圓相切判別式為0得到關(guān)于km的關(guān)系式,聯(lián)立直線方程求出點(diǎn)MN的坐標(biāo),由兩點(diǎn)的距離公式求出、,從而通過化簡作商即可求出定值.

1)依題意,,所以,所以橢圓C的標(biāo)準(zhǔn)方程為.

2)因?yàn)橹本l分別與直線和直線相交,所以直線l一定存在斜率.

設(shè)直線,由

,得.

代入,得,

代入,得,

所以,,②

由①式,得,③

把③式代入②式,得

所以,即為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)在區(qū)間[1,2]上的最大值;

(2)設(shè)在(0,2)內(nèi)恰有兩個(gè)極值點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐的底面與圓錐的底面都在平面上,且過點(diǎn),又的直徑,垂足為.設(shè)三棱錐的所有棱長都是1,圓錐的底面直徑與母線長也都是1,圓錐的底面直徑與母線長也都是1.求圓錐的頂點(diǎn)到三棱錐的三個(gè)側(cè)面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)的定義域D={x|x≠0},且滿足對(duì)于任意x1,x2D.f(x1·x2)=f(x1)+f(x2).

(1)f(1)的值;

(2)判斷f(x)的奇偶性并證明;

(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)(0,+∞)上是增函數(shù),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)則不等式的解集為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)則不等式的解集為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2bcosC+c=2a.

(Ⅰ)求角B的大。

(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是202021日到220日,某地區(qū)新型冠狀病毒疫情新增數(shù)據(jù)的走勢(shì)圖.

(Ⅰ)從這20天中任選1天,求新增確診和新增疑似的人數(shù)都超過100的概率;

(Ⅱ)從新增確診的人數(shù)超過100的日期中任選兩天,用X表示新增確診的人數(shù)超過140的天數(shù),求X的分布列和數(shù)學(xué)期望;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)g(x)2f(x).

(1)判斷函數(shù)g(x)的奇偶性;

(2)x(1,0),

①求f(x)的值域;

g(x)tf(x)恒成立,求實(shí)數(shù)t的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案