已知:二次函數(shù)y=-2x2+5x+12,求:
(1)拋物線的開(kāi)口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo);
(2)當(dāng)y=0,y>0,y<0時(shí),對(duì)應(yīng)的x的取值范圍;
(3)當(dāng)y>15時(shí),x的范圍;
(4)當(dāng)x∈[0,2]時(shí),y的最大值和最小值;
(5)當(dāng)x∈[3,4]時(shí),y的最大值.
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)首先把二次函數(shù)的一般式轉(zhuǎn)化成頂點(diǎn)式,進(jìn)一步求出開(kāi)口方向,對(duì)稱軸和頂點(diǎn)坐標(biāo).
(2)解一元二次方程和一元二次不等式
(3)解一元二次不等式.
(4)在閉區(qū)間內(nèi)求函數(shù)的最值.
(5)在閉區(qū)間內(nèi)求函數(shù)的最大值,要注意函數(shù)在區(qū)間內(nèi)的單調(diào)性.
解答: 解:(1)二次函數(shù)y=-2x2+5x+12=-2(x-
5
4
)2+
121
8

∴拋物線的開(kāi)口方向向下、對(duì)稱軸方程:x=
5
4
、頂點(diǎn)坐標(biāo):(
5
4
,
121
8
)

(2)①當(dāng)y=0時(shí),即-2x2+5x+12=0解得:x=-
3
2
或4
②當(dāng)y>0時(shí),即-2x2+5x+12>0解得:-
3
2
<x<4

③當(dāng)y<0時(shí),即-2x2+5x+12<0解得:x<-
3
2
或x>4
(3)當(dāng)y>15時(shí),即-2x2+5x+12>15解得:1<x<
3
2

(4)當(dāng)x∈[0,2]時(shí),ymin=12 ymax=
121
8

(5)當(dāng)x∈[3,4]時(shí),函數(shù)為單調(diào)遞減函數(shù),x=3時(shí)ymax=9
故答案為:(1)拋物線的開(kāi)口方向向下、對(duì)稱軸方程:x=
5
4
、頂點(diǎn)坐標(biāo):(
5
4
121
8
)

(2)(2)①當(dāng)y=0時(shí),即-2x2+5x+12=0解得:x=-
3
2
或4
②當(dāng)y>0時(shí),即-2x2+5x+12>0解得:-
3
2
<x<4

③當(dāng)y<0時(shí),即-2x2+5x+12<0解得:x<-
3
2
或x>4
(3)當(dāng)y>15時(shí),1<x<
3
2

(4)當(dāng)x∈[0,2]時(shí),ymin=12 ymax=
121
8

(5)當(dāng)x∈[3,4]時(shí)ymax=9
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn):二次函數(shù)一般式與頂點(diǎn)式的轉(zhuǎn)換,頂點(diǎn)坐標(biāo)和對(duì)稱軸方程,一元二次方程的解法,一元二次不等式的解法,函數(shù)的最大值和最小值及相關(guān)的運(yùn)算問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的漸近線均與x2+y2-4x+1=0相切,則該雙曲線離心率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,求證:
a-ccosB
b-ccosA
=
sinB
sinA

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,兩塊斜邊長(zhǎng)相等的直角三角板拼在一起,若
AD
=x
AB
+y
AC
,則(x,y)所對(duì)應(yīng)的點(diǎn)坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-6x+4lnx+a(x>0),若方程f(x)=0有兩個(gè)不同的實(shí)根,則實(shí)數(shù)a的值為( 。
A、a=5或a=8-4ln2
B、a=5或a=8+4ln2
C、a=-5或a=8-4ln2
D、a=5或a=8-4ln3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,要建造一面靠墻的兩間面積相同的矩形儲(chǔ)備間,如果可供建造圍墻的材料總長(zhǎng)是30m,那么如何設(shè)計(jì)矩形的長(zhǎng)和寬可使儲(chǔ)備間的面積最大,并求這個(gè)最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線a,b,c,d,給出以下四個(gè)命題:
①若a∥b,a⊥c,則b⊥c;
②若a⊥c,b⊥c,則a∥b;
③若a,b分別和異面直線c,d都相交,則a,b是異面直線;
④已知a,b是異面直線,若AB∥a,BC∥b,則∠ABC是異面直線a,b所成的角,
則以上命題中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次方程x2+2(m+3)x+2m+14有兩個(gè)不同的實(shí)根x1,x2,求下列各條件下實(shí)數(shù)m的取值范圍:
(1)x1<x2<5;
(2)x1<1,x2>3;
(3)0<x1<1<x2<5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式組
x-y+4≥0
x+y≥0
x≤2
表示的平面區(qū)域的面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案